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Abstract
Mathematical models of biochemical processes are essential tools to understanding

the dynamics of intercellular events in living organisms. The copy number of species in
such a system fluctuates in time due to the random occurrence of chemical reactions,
leading to variability in the population of living cells. Therefore, characterising the
number of species at a certain time requires stochastic models of particular interest. To
this end, numerous modelling approaches have been proposed in both deterministic
and stochastic settings to elucidate the dynamic behaviour of biochemical reaction
networks.

Gene expression, the production process of gene products such as proteins, is one
of such biological mechanisms intensively studied over the last decades. The (basic)
two-stage model gives the essential description of gene expression, which entails
the dynamics of transcription and translation processes involving mRNA and protein
species. In the stochastic context, the dynamics of species in gene expression is given
by the chemical master equation (CME). Despite its simple structure, finding a solution
to the CME is often challenging, and analytical solutions are inaccessible for most
systems. Consequently, numerical methods, including stochastic simulations, emerge
as a remedy to the underlying problem.

On the other hand, with the recent advances in technology, experimental studies
open a new window into the more advanced models capable of capturing the detailed
dynamics of molecular systems. Accordingly, the present biochemical reaction models
need to be revisited. In particular, gene expression is far more complex than the basic
two-stage model. The mRNA molecules, for example, can switch between their active
and inactive states.

In this thesis, we consider and study various structured chemical reaction systems
tailored for gene expression, generalising the results of the basic two-stage model.
Specifically, we first begin with a stochastic gene-expression model that accounts for
a self-regulating protein molecule with exponential and phase-type lifetimes. We
show that the one-dimensional and multiclass-multistage models exhibit the same
stationary distribution in the case of non-bursty production of protein regime.

Second, we focus on extending the basic two-stage model to that involving an
mRNA inactivation loop, where mRNA molecules are allowed to transition between
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active and inactive states. For this model, we present a systematic mathematical
derivation of the generating function of the stationary distribution of the species,
providing the marginal protein distribution given in terms of special functions.

Next, we characterise the protein noise in terms of the twometrics, Fano factor and
the squared coefficient of variation, concluding that the extended model exhibits less
protein noise than the basic two-stage model. Importantly, we demonstrate how the
models studied here play an important role in modelling the formation of stem–loops,
thus controlling noise.

Finally, we present a generalisation of the two-stage and the extended model,
which involves multiple mRNA states. We give a detailed mathematical analysis of
the model, obtain marginal molecular distributions, and provide an additional gene
expression example, which can be obtained from the generalised model.

Overall, in this thesis, we develop and study various gene expression models that
may contribute to understanding the stochastic dynamics of biochemical reaction
networks arising in relevant research fields.

Keywords: biochemical processes • Master equation • stochastic simulation • gene
expression
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Abstrakt
Matematické modely biochemických procesov sú základnými nástrojmi na

chápanie dynamiky medzibunkových udalostí v živých organizmoch. Fluktuácia
počtu kópií druhov v takomto systéme v čase je dôsledkom náhodného výskytu
chemických reakcií, čo vedie ku variabilite populácie živých buniek. Preto si
charakterizácia počtu druhov v určitom čase vyžaduje stochastické modely, ktoré
majú osobitný záujem. Na tento účel bolo navrhnuté mnozstvo prístupov k
modelovaniu aj v deterministických, aj v stochastických nastaveniach, aby objasnili
dynamické správanie sietí biochemických reakcií.

Génová expresia, proces tvorby génových produktov, ako sú proteíny, je jedným z
takýchto biologických mechanizmov intenzívne študovaných v posledných
desaťročiach. (Základný) dvojstupňový model poskytuje podstatný popis génovej
expresie, ktorý zobrazuje dynamiku transkripčných a translačných procesov
zahŕňajúcich mRNA a proteínové druhy. V stochastickom kontexte, dynamika druhov
v génovej expresii je daná chemickou Master rovnicou (CME). Napriek jednoduchej
štruktúre je hľadanie riešenia pre CME často náročné a analytické riešenia sú pre
väčšinu systémov nedostupné. V dôsledku toho sa ako náprava objavujú numerické
metódy, vrátane stochastických simulácií.

Na druhú stranu, vďaka nedávnym pokrokom v technológii sa otvárajú
experimentálne štúdie nové okno do pokročilejších modelov, ktoré sú schopné
zachytiť detailnú dynamiku molekulárnych systémov. V súlade s tým je potrebné
prehodnotiť súčasné modely biochemických reakcií. Najmä génová expresia je oveľa
zložitejšia ako základný dvojstupňový model. Napríklad, molekuly mRNA sa môžu
prepínať medzi aktívnym a neaktívnym stavmi.

V tejto práci uvažujeme a študujeme rôzne štruktúrované chemické reakčné
systémy prispôsobené pre génovú expresiu, následne zovšeobecňujeme výsledky
základného dvojstupňového modelu. Najprv začíname so stochastickým modelom
génovej expresie, ktorý zodpovedá za samoregulačnú proteínovú molekulu s
exponenciálnym a fázovým typom života. Ukazujeme, ze keď režim produkcie
proteínu je neprerušovaným (bez náhodnych pulzov), jednorozmerné a viactriedne-
viacstupňové modely vykazujú rovnaké stacionárne rozdelenie.

Následne sa zameriavame na rozšírenie základného dvojstupňového modelu na
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model zahŕňajúci inaktivačnú slučku mRNA, kde je pre molekuly mRNA umožnený
prechod medzi aktívnymi a neaktívnymi stavmi. Pre tento model uvádzame
systematické matematické odvodenie generujúcej funkcie stacionárneho rozdelenia,
poskytujúce marginálne rozdelenie proteínu vyjadrené pomocou špeciálnych funkcií.

Ďalej charakterizujeme proteínový šum z hľadiska dvoch metrík, Fano faktora a
štvorcového variačného koeficientu, pričom sme dospeli k záveru, že rozšírený
model vykazuje menší proteínový šum ako základný dvojstupňový model. Toto je
dôležitá demonštrácia toho, ako študované modely hrajú dôležitú úlohu pri
modelovaní utvárania kmeňových slučiek, tým kontrolujúc šum.

Nakoniec uvádzame zovšeobecnenie dvojstupňového a rozšíreného modelu, ktorý
zahŕňa viacero stavov mRNA. Poskytujeme podrobnú matematickú analýzu modelu,
získavame marginálne molekulárne rozdelenia a poskytujeme ďalší príklad génovej
expresie, ktorý možno získať zo zovšeobecneného modelu.

Celkovo v tejto práci vyvíjame a študujeme rôzne modely génovej expresie, ktoré
môžu prispieť k pochopeniu stochastickej dynamiky sietí biochemických reakcií
vznikajúcich v relevantných oblastiach výskumu.

Kľúčové slová: biochemické procesy • Master rovnica • stochastické simulácie •

génová expresia
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Chapter1
Introduction

1.1 Motivation

In recent decades, the study of complex systems has gained significant attention in
many research fields, including physics, chemistry and biological sciences. In
particular, the models involving chemical reaction kinetics have become an
in-demand research topic of interest. In simplest assumptions, the dynamics of such
chemically reacting systems are modelled deterministically [1]. However, the
number of species in a reaction system is often subject to inherent stochasticity,
which requires a rigorous understanding of mathematical modelling. To this end,
many different deterministic and stochastic approaches have been proposed to find a
solution to the underlying problem, analytical or numerical.

The deterministic description of the dynamics of biochemical systems is given by
the reaction rate equations, which consist of a set of ordinary differential equations.
In particular, when the system of interest involves a large number of molecules,
deterministic approaches are adequate to govern the dynamics of the mean number
of species in the system. Unsurprisingly, the stochastic effects come into play for the
systems with a low copy number of molecules and many other biological processes,
which are inherently subject to random fluctuations due to the production and
degradation reactions, e.g., gene expression [2]. These stochastic effects are
characterised by the associated probability distributions, whose description is given
by the chemical master equation (CME) capturing the full random dynamics.

The CME consists of a finite set of differential equations describing the time
evolution of the probability of being in a state at a given time. Except for simple
cases, no analytical solutions to the CME are obtained. Consequently, stochastic
simulation algorithms that enable us to generate sample time trajectories of species
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Organisation Introduction

in a system have been developed as an alternative approach rather than seeking a
solution to the underlying CME [3, 4]. However, using a stochastic simulation
algorithm can come with a high computational cost for systems including many
species.

One of the widely-studied chemical reaction networks where random fluctuations
in the number of species play an essential role is the stochastic model of gene
expression. The model describes the synthesis of the gene products such as protein
and messenger ribonucleic acid (mRNA). From a modelling viewpoint, the simplest
gene expression mechanism consists of two main steps: transcription and
translation; it is therefore referred to as the two-stage gene-expression model in the
literature. While an mRNA molecule is produced during the transcription,
translation of the “transcribed information” takes place to produce protein in the
second step. Due to the random occurrence of the production and decay reactions,
the copy number of species in the two-stage model of gene expression fluctuates in
time. These random fluctuations are referred to as noise.

Noise in gene expression can stem from many different sources. For example,
transcription factors that are gene-specific proteins that bind to DNA to regulate the
transcription rate play an essential role in gene expression noise [5, 6]. Recent studies
have shown that the lifetime of such regulatory molecules can assume a far more
complex model than simple exponential, where the (basic) two-stage model remains
inadequate for tracking the system’s full dynamics [7, 8]. Another biologically possible
scenario by which stochasticity can be regulated is the inclusion of anmRNA activation
loop into the (basic) two-stage model, turning active mRNA molecules into inactive
and vice versa.

As outlined above, motivated by relevant studies in the literature, we focus on
multivariate gene expression models in this thesis.

1.2 Organisation

This thesis is organised as follows. Chapter 2 presents fundamental mathematical
concepts and methods arising in biochemical systems, which will be used
throughout the following chapters. In Section 2.1, we review the two-state chain

2



Organisation Introduction

and introduce the associated Master equation together with its solution. We then
give a simple example of a chemical reaction system that can be modelled using the
two-state chain in Section 2.2. We next, in Sections 2.3–2.4, present the relationship
between chemical reaction networks and queueing theory, providing the necessary
elementary information about some simple queuing models we will use in the
subsequent chapters. In Section 2.5, we present the generating function technique
for solving a particular class of systems of differential equations. We demonstrate in
detail the stochastic simulation algorithm, of which we give two specific examples in
Section 2.6. Next, we present how reaction kinetics works in general settings in
Section 2.7. After briefly reviewing gene expression in Section 2.8, we finalise this
chapter by introducing the basic two-stage gene-expression model, which will be
frequently used throughout this thesis.

In Chapter 3 we study a stochastic gene-expression model for a self-regulating
transcription factor whose lifespan (or time till degradation) follows a general
distribution modelled as per a multi-dimensional phase-type process. In Section 3.2,
we formulate, both in the deterministic and stochastic settings, a one-dimensional
model for the abundance of a transcription factor with a memoryless lifetime,
allowing the production rate to vary with the copy number. We show that steady
states of the deterministic model are given by the fixed points of the feedback
response function. We next characterise the steady-state behaviour of a structured
multiclass–multistage model that accounts for complex lifetime pathways in Section
3.3. We demonstrate that the deterministic fixed points and the stochastic stationary
distribution for the one-dimensional framework remain valid for the total protein
amount in the multi-dimensional setting. We provide explicit counter-examples in
Section 3.4 to show that the distribution invariance result rests on the assumption of
non-bursty production of protein. In Section 3.5, we approximate the stochastic
protein distribution by a mixture of Gaussians and study the rates of metastable
transitions between the Gaussian modes in the one- and multi-dimensional settings.

Chapter 4 focuses on a two-stage stochastic gene expression model that extends
the standard model by an mRNA inactivation loop. The model is introduced in
Section 4.2; the stationary means are obtained from the system of deterministic rate
equations; the CME is formulated. We give a detailed mathematical breakdown of

3



Organisation Introduction

the associated CME and rederive the stationary means using factorial cumulants in
Section 4.3. Next, we express the Fano factor (variance-to-mean ratio) in terms of
these cumulants in Section 4.4. Additionally, we provide a special-function
representation of the sought-after joint generating function in Section 4.5. We then
obtain the marginal mRNA and protein distributions employing the generating
function of the stationary distribution in Section 4.6. Furthermore, we perform
stochastic simulations to compare the theoretical results with those obtained by the
simulations.

Chapter 5 presents the application of gene-expression model, which is studied in
the previous chapter. More specifically, we briefly summarise our motivation for
studying this model by providing a biological example of the formation of
stem–loops in Section 5.1. Next, we characterise the noise in the basic two-stage
model and the extended model in terms of the Fano factor and the squared
coefficient of variation in Section 5.2. In Section 5.3, we study noise control by
stem–loops in detail, obtaining the Fano factor and the CV2, which leads us to
conclude that incorporating an mRNA inactivation loop into the basic two-stage
model decreases the protein noise.

In Chapter 6, we generalise the extended model of Chapter 4 to a structured
multivariate model which considers multiple mRNA states. The model and its
corresponding CME are formulated in Section 6.2. Next, we focus on a
comprehensive mathematical analysis of the model to obtain a solution to the
corresponding PDE in Section 6.3. In the next Section 6.4, we obtain the marginal
mRNA distributions and determine the moments of the protein distribution. We then
discuss two distinct gene-expression models, the mRNA inactivation loop and the
multiphasic model, which can be obtained as special cases from the structured
model in Sections 6.5–6.6.

The thesis is summarised and concluded in Chapter 7.
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Chapter2
Preliminaries

This chapter introduces fundamental concepts and methods that often arise in the
mathematical modelling of chemical reaction systems. These introductory topics will
be used in the following chapters. First, we start with the simplest Markovian model,
i.e. the two-state model, that is often used to describe random switching in chemical
reaction systems. We then present step-by-step how to model a degradation reaction
in deterministic and stochastic contexts, providing its corresponding ODE and
chemical master equation. Next, we show the relationship between chemical
reaction networks and queueing systems by introducing some basic Markovian
models of queues. Then, we present the generating function method for solving the
CME. Additionally, we provide the SSA for obtaining sample time trajectories of
species in a system and discuss general reaction kinetics. Finally, we briefly overview
the stochastic gene expression process on which the following chapters will be based.

2.1 The two-state model

A two-state chain is one of the simplest models widely used in stochastic modelling.
As its name indicates, the chain involves two states, say state 1 and state 2, where
random transitions occur from each of which at constant rates p and q, respectively.
A graphical representation of the model is shown in Figure 2.1. The rate constant p is
defined so that pdt gives the probability that a single transition from state 1 to state 2
occurs in the time interval [t, t+dt)where t stands for time and dt is an infinitesimally
small time step.

A question of interest is that, starting at time t = 0, how the probabilities p1(t)
and p2(t) of being found in state 1 and 2 at time t, respectively, evolve as time goes
on. To answer this question, let us determine all possible transitions as follows: i)

5



The two-state model Preliminaries

1 2

p

q

Figure 2.1: Schematic of the two-state chain. Random transitions occur between
states 1 and 2 at constant rates p and q, respectively.

the system can be in state 1 at time t and have not moved to state 2 during the time
interval [t, t+dt) or ii) it can be in state 2 and can move to state 1 in the time interval
[t, t + dt). Note that we here neglect the terms of O(dt2) due to the fact that these
terms will be vanishing in the limit dt→ 0. Hence, we obtain

p1(t+ dt) = p1(t)[1− pdt] + p2(t)qdt. (2.1)

Rearranging (2.1) and taking the limit dt → 0 yields the following ordinary
differential equation (ODE)

dp1(t)

dt
= −pp1(t) + qp2(t) (2.2)

for p1(t). Likewise, we can obtain
dp2(t)

dt
= −qp2(t) + pp1(t) (2.3)

for p2(t). It is worth noting that the set of equations (2.2)–(2.3) is nothing else than
a linear ODE system, but it is referred to as the differential Chapman-Kolmogorov

equation in mathematics, the master equation in physics, and the chemical master

equation in chemistry.
The ODE system (2.2)–(2.3) is subject to initial conditions

p1(0) = p
(0)
1 , p2(0) = p

(0)
2 , (2.4)

where p(0)1 and p(0)2 are prescribed distributions that characterise the state of the system
at the initial time, satisfying the normalisation condition p(0)1 + p

(0)
2 = 1. In particular,

when the process of interest is initialised in state 1, equation (2.4) takes the form of

p
(0)
1 = 1, p

(0)
2 = 0. (2.5)

For the sake of simplicity, the system (2.2)–(2.3) can be expressed in matrix form as
dp

dt
= QTp, (2.6)

6
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where the transition matrix is given by

Q =

−p p

q −q

 ,

and
p(t) =

(
p1(t) p2(t)

)T
is the state vector.

The explicit solution to the system (2.2)–(2.3) subject to the initial conditions (2.4)
satisfying (2.5) can be obtained as

p1(t) =
q + pe−(p+q)t

p+ q
, (2.7)

p2(t) =
p
(
1− e−(p+q)t

)
p+ q

. (2.8)

At steady state, the system (2.2)–(2.3) reduces to the algebraic expressions

0 = −ppss1 + qpss2 ,

0 = −qpss2 + ppss1 ,

where p1(t) ≡ pss1 and p2(t) ≡ pss2 are the stationary probabilities that are satisfied by

pss1 =
q

p+ q
, pss2 =

p

p+ q
. (2.9)

We note that stationary probabilities (2.9) coincide with the limit values of the
time-dependent results (2.7)–(2.8) as t→ ∞.

2.2 A simple model of degradation

Let us present an elementary chemical reaction system, which can be thought of as a
collection of independent two-state chains. Consider the following degradation
reaction given by

X
k−→ ∅, (2.10)

where X is a chemical species of interest decaying at constant reaction rate k. The
symbol ∅ stands for chemical species that are of no interest. The reaction (2.10) can
deterministically be modelled by

dX

dt
= −kX, (2.11)

7
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where X = X(t) denotes the number of X molecules at time t. The left hand side of
(2.11) denotes the change in the number ofX with respect to time, whereas the right
hand side implies that the change is proportional to the decay rate k . The solution
is, clearly, X(t) = X(0)e−kt.

In a stochastic setting, the reaction rate k is reinterpreted so that kdt gives the
probability of degradation of a speciesX in the time interval [t, t+dt) [9]. Particularly,
the probability that exactly one degradation reaction occurs during the time interval
[t, t+ dt) is given by X(t)kdt. Consequently, we have the following possible reactions
occuring in [t, t+ dt):

P(exactly one reaction) = X(t)kdt+O(dt2), (2.12)

P(no reactions) = 1−X(t)kdt+O(dt2), (2.13)

P(two or more reactions) = O(dt2), (2.14)

where P stands for the probability that the event of interest occurs.

The Chemical Master Equation Let pn(t) denote the probability of having n

molecules of X in the system at time t. The probability that one of the reactions
(2.12)–(2.14) occurs in [t, t+ dt) is then given by

pn(t+ dt) = pn(t)(1− kndt) + pn+1(t)k(n+ 1)dt. (2.15)

Rearranging the terms in (2.15) and dividing both sides by dt yields
pn(t+ dt)− pn(t)

dt
= k(n+ 1)pn+1(t)− knpn(t). (2.16)

Taking the limit dt→ 0 of (2.16), we arrive at
dpn
dt

= k(n+ 1)pn+1 − knpn, n ≥ 0. (2.17)

Equation (2.17) is known as “the chemical master equation (CME)” [10], and denotes
an infinite system of ODEs for the probabilities pn, where n = 0, 1, 2, . . .. Given an
initial condition such as

pn(0) =

1 if n = n0,

0 otherwise,
(2.18)

where n ≤ n0, reduces (2.17) to a finite set of ODEs. Setting n = n0 gives
dpn0

dt
= −kn0pn0 , where pn0(0) = 1,

8
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which admits the solution
pn0(t) = e−kn0t. (2.19)

Inserting (2.19) into (2.17) yields
d

dt
pn0−1(t) = −k(n0 − 1)pn0−1(t) + kn0e

−kn0t. (2.20)

Using the method of variation of constants, we seek for a solution to (2.20). The
solution ph(t) to the homogeneous equation

pn0−1(t) + k(n0 − 1)pn0−1(t) = 0 (2.21)

is obtained as
ph(t) = e−k(n0−1)t. (2.22)

We then assume that the general solution to (2.20) is in the form of

pn0−1(t) = v(t)ph(t). (2.23)

To obtain v(t), we substitute (2.23) into (2.20), and solve for v(t). Elementary
calculations yields

v(t) =

∫
kn0e

−kn0t

e−k(n0−1)t
dt

= −kn0

∫
e−ktdt

= −n0e
−kt + C, C is constant.

Imposing initial condition pn0−1(0) = 0 gives

v(t) = n0

(
1− e−kt

)
. (2.24)

Substituting (2.22) and (2.24) into (2.23) reads

pn0−1(t) = n0

(
1− e−kt

)
e−k(n0−1)t,

which is the sought-after solution to (2.20). Furthermore, we can inductively show
that

pn(t) =

(
n0

n

)(
1− e−kt

)n0−n
e−knt, (2.25)

which corresponds to the Binomial distribution [11]. Equation (2.25) can be used to
quantify the characteristics (i.e. the mean and variance) of the degradation reaction
(2.10).
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0 1

λ0

µ1

2

λ1

µ2

. . .

λ3

µ3

n

λn−1

µn

. . .

λn

µn+1

Figure 2.2: A schematic of a birth-death process. Birth and death transitions occur at
rates λn and µn, respectively.

The chemical master equation (2.17) can be written in matrix form as
dp

dt
= Q⊤p,

where p(t) =
[
p0(t) p1(t) . . . pn(t) . . .

]⊤
is the vector of probabilities, and Q is

given by

Q = k


0 0 0 . . .

1 −1 0 . . .

2 −2 . . .
. . .

 .
We here note that the matrix Q and the vector p are different from those in (2.6).

2.3 Birth–Death processes

Birth–death processes (BDPs) have been extensively studied to model population
dynamics in biology, chemistry, and other related fields such as mathematics.
Formally, BDPs are a specific class of continuous-time Markov chains in which the
number of species of interest in a system is modelled. The states (n) of the Markov
chain are the nonnegative integers from which only transitions to adjacent states are
permitted. A schematic representation of the transition rates in a BDP is given in
Figure 2.2. In particular, BDPs have been widely used in queueing theory to model
arrivals and departures in a waiting system. Following queueing theory terminology,
the states represent the number of “customers” in the system. A customer’s arrival to
the system is referred to as “birth”, whereas a “death” corresponds to a customer’s
departure. The time until the next arrival and departure are exponential random
variables with rates λn and µn. Upon an arrival and departure, the system moves
from state n to n + 1 and n to n − 1, respectively. Below, we will derive a system of
difference-differential equations that describes the dynamics of birth-death process.
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Let pn(t) denote the probability that the number of customers (or “population”) is
equal to n at time t. Assuming that births and deaths are independent, we can make
the following statements for a birth transition in (t,∆t]:

P(one birth) = λn∆t+ o(∆t) (2.26)

P(no birth) = 1− λn∆t+ o(∆t), (2.27)

P(two or more birth) = o(∆t), (2.28)

where n ≥ 0, and ∆t is an infinitesimally small time step. By o(∆t), we mean that
the probability that any other birth or death other than those stated above occurs is
negligibly small, i.e., of order o(∆t). Likewise, for n > 0, we have

P(one death) = µn∆t+ o(∆t) (2.29)

P(no death) = 1− µn∆t+ o(∆t), (2.30)

P(two or more death) = o(∆t) (2.31)

for a death transition in the time interval (t,∆t]. The system of difference-differential
equations for this BDP can be obtained via the expression for pn(t+∆t) and taking the
limit of [pn(t+∆t)− pn(t)]/∆t as ∆t→ 0 (c.f. Section (2.2)). It can also be obtained
by writing down the balance equations, which state that the outflux rate of transitions
from a given state must be equal to the influx rate of transitions. In this case, the
influx rate is given by

λn−1pn−1(t) + µn+1pn+1(t), (2.32)

whereas the outflux rate is given by

(λn + µn)pn(t). (2.33)

Combining (2.32) and (2.33), we obtain the net probability flow into state n as

dpn(t)

dt
= λn−1pn−1(t) + µn+1pn+1(t)− (λn + µn)pn(t), n ≥ 1, (2.34)

dp0(t)

dt
= µ1p1(t)− λ0p0(t). (2.35)

Here we note that (2.35) gives the flow rate at the boundary state. At steady state, i.e.
equating the time derivatives in (2.34) and (2.35) to zero, a solution to the system
(2.34)–(2.35) can be obtained as follows. We rewrite the equations (2.34)–(2.35)

11
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recursively as

pn+1 =
λn + µn

µn+1

pn −
λn−1

µn+1

pn−1, n ≥ 1, (2.36)

p1 =
λ0
µ1

p0, (2.37)

Substituting (2.37) into (2.36) gives

p2 =
λ1λ0
µ2µ1

p0. (2.38)

Likewise, using recursion, we get

p3 =
λ2λ1λ0
µ3µ2µ1

p0, (2.39)

which, intuitively, leads to

pn = p0

n∏
i=1

λi−1

µi

, for n ≥ 1. (2.40)

Formula (2.40) can be proven by using mathematical induction. The normalisation
condition

∞∑
i=0

pi = 1

implies that

p0 =

(
1 +

∞∑
n=1

n∏
i=1

λi−1

µi

)−1

. (2.41)

Note that equation (2.41) provides a necessary and sufficient condition for the
existence of a steady-state solution when

1 +
∞∑
n=1

n∏
i=1

λi−1

µi

<∞.

In a BDP, the transition rates (2.26)–(2.28) and (2.29)–(2.31) lead to the following
generator matrix:

Q =


−λ0 λ0

µ1 −(µ1 + λ1) λ1

µ2 −(µ2 + λ2) λ2
. . .

 , (2.42)

which is a (tridiagonal) square band matrix whose elements only on the main
diagonal, the subdiagonal, and the superdiagonal are nonzero. In the following
sections, we shall briefly introduce a few simple queueing models that underline the
processes we will be studying in the following chapters.
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2.4 Basic Markovian queueing systems

A chemical reaction system can be interpreted as an infinite server queueing
network [12]. For a chemical species of interest in the system, the reactions
production, decay, and conversion correspond to an “arrival”, “departure”, and the
“movement” of a “customer” from one state (or station) to another, respectively. The
movement of the customers (species) in the system is independent of each other.
Following these key points, it can be inferred that queueing theory thereby provides
insights into such reaction networks in stochastic processes. Here we introduce some
of simple queueing models which we will be using in the following chapters.

The M/M/1 queue Let us first consider the simplest single-server queueing model:
the M/M/1 queue. It is used to describe the waiting times in a queueing system
such as communication networks. The two letters M in its abbreviation stand for
memorylessness or Markovian while the number 1 denotes the number of servers. The
inter-arrival and the service times are assumed to be exponentially distributed. The
arrivals occur in accordance with Poisson distribution with rate λ

P[N(t) = k] = e−λt (λt)
k

k!
, k = 0, 1, 2, . . . ,

where N(t) is the number of arrivals [11]. The service times have also an exponential
distribution with rate parameter µ. The M/M/1 queue model can be described as a
continuos time Markov chain with the generator matrix

Q =


−λ λ

µ −(µ+ λ) λ

µ −(µ+ λ) λ
. . .

 ,

whose state space S = {0, 1, 2, . . .} corresponds to the number of customers in the
system [13].

The M/M/c queue Next, we consider the M/M/c queue which consists of c
identical servers providing independent and identically distributed exponential
service at rate µ. The arrival of customers follows a Poisson process with rate λ.
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Costumers are served according to principle “first come first served” as long as there
is a free server; otherwise, costumers join the queue. Let assume that the number n
of customers are greater then the number c of servers. The generator matrix for this
process can then be written as

Q =

0

1
...
c

c+ 1
...



−λ λ

µ −(µ+ λ) λ
. . .

cµ −(cµ+ λ) λ

cµ −(cµ+ λ) λ
. . .


,

which is a tridiagonal matrix having the same rates when all servers are unavailable.

TheM/M/∞ queue Wenow focus on theM/M/∞ queuewhich has infinitely many
servers. A schematic of this queue is given in Figure 2.3. The model can be thought as
the limit of c servers as c→ ∞. The arrivals follow a Poisson process, and the service
times have an exponential distribution. As before, the arrival and service rates are
denoted by λ and µ, respectively. The generator matrix is given by

Q =



−λ λ

µ −(µ+ λ) λ

2µ −(2µ+ λ) λ

3µ −(3µ+ λ) λ
. . .


. (2.43)

The differential-difference equations for theM/M/∞ queue can be obtained as
dpn
dt

= λpn−1 + µ(n+ 1)pn+1 − (λ+ µn)pn, n ≥ 1, (2.44)
dp0
dt

= −λp0 + µp1. (2.45)

The time-dependent system of equations (2.44)–(2.45) can be solved using the
generating function method [14], which will be reviewed in Section 2.5.

Note that in the context of chemical reactions theM/M/∞ queue can be thought
as a birth and death process (cf. Section 2.3) given by

∅ λ−→ X, X
µ−→ ∅, (2.46)
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Figure 2.3: Transition rates diagram for theM/M/∞ queue.

where the chemical speciesX is produced from an inexhaustible source of constituents
denoted by ∅; afterwards, it is degraded.

Rather than finding the full time dependent probabilities, we focus on the
stationary case, i.e. we solve in p the algebraic system

Q⊤p = 0, (2.47)

whereQ⊤ is the transpose of the generator matrix (2.43) and p is the state vector. By
(2.47), we have

λp0 = µp1,

(λ+ µ)p1 = λp0 + 2µp2, n = 1,

(λ+ nµ)pn = λpn−1 + (n+ 1)µpn+1, n = 2, 3, . . .

(2.48)

which admit the solution

pn =
1

n!

(
λ

µ

)n

p0, n = 0, 1, 2, . . . . (2.49)

The normalisation condition∑∞
0 pn = 1 implies that

p0 = exp

(
−λ
µ

)
. (2.50)

Inserting (2.50) into (2.49) gives

pn = exp

(
−λ
µ

)
(λ/µ)n

n!
, n = 0, 1, 2, . . . , (2.51)

which implies that the stationary distribution of the number of customers in aM/M/∞

queue is Poisson with mean λ/µ.

The step operator formalism Master equations (2.17) can be expressed in a more
systematic and compact form using the step operator notation [10]. The linear
operator E is defined by any function f(n) where n takes integer values such that

Ek[f(n)] = f(n+ k), and E−k[f(n)] = f(n− k). (2.52)
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In particular,
E[f(n)] = f(n+ 1) and E−1[f(n)] = f(n− 1). (2.53)

The master equation (2.17) for the decay process (2.10) can be rewritten as
dpn
dt

= k(E− 1)npn, n ≥ 0. (2.54)

Similarly, the master equation (2.44) for theM/M/∞ can be expressed as
dpn
dt

= λ
(
E−1 − 1

)
pn + µ (E− 1)npn, n ≥ 1. (2.55)

Equations (2.54) and (2.55) are subject to the initial condition (2.18).
In the next section, we will describe the generating function method for solving

the chemical master equation.

2.5 Generating functions

In this section we present the generating function technique for solving the system of
equations given by (2.44). Generating functions are useful, in particular, for solving
a certain class of difference equations.

Let G(z, t) denote the generating function for a probability distribution pn(t)

defined as
G(z, t) =

∞∑
n=0

znpn(t). (2.56)

Differentiating (2.56) with respect to z gives
∂G

∂z
=

∞∑
n=0

nzn−1pn,
∂2G

∂z2
=

∞∑
n=0

n(n− 1)zn−2pn. (2.57)

Evaluating (2.57) at z = 1 gives
∂G(z, t)

∂z

∣∣∣∣
z=1

=
∞∑
n=0

npn(t) = ⟨n(t)⟩, (2.58)

∂2G(z, t)

∂z2

∣∣∣∣
z=1

=
∞∑
n=0

n(n− 1)pn(t) = ⟨n2(t)⟩ − ⟨n(t)⟩. (2.59)

Equations (2.58) and (2.59) correspond to the (first and second) factorial moments
of pn(t); the function F (u, t) = G(1 + u, t) is thereby referred as to “factorial moment

generating function” [11, 15]. Note that the normalisation condition implies that

G(z, t)|z=1 =
∞∑
n=0

pn(t) = 1. (2.60)
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Let us now focus on solving (2.44) using the generating function (2.56). To do so,
we multiply (2.44) by the factor zn and sum over all n to obtain

∂G(z, t)

∂t
= λ

∞∑
n=1

znpn−1 + µ

∞∑
n=0

(n+ 1)znpn+1 − λ

∞∑
n=0

znpn − µ

∞∑
n=0

nznpn. (2.61)

Factoring z out of the first and last sums on the right hand side of (2.61) so that we
can utilise the formulae (2.56)–(2.57) gives

∂G(z, t)

∂t
= λz

∞∑
n=1

zn−1pn−1+µ
∞∑
n=0

(n+1)znpn+1−λ
∞∑
n=0

znpn−µz
∞∑
n=1

nzn−1pn, (2.62)

which can be rewritten as

∂G

∂t
= λzG+ µ

∂G

∂z
− λG− µz

∂G

∂z
. (2.63)

Rearranging (2.63), we arrive at

∂G

∂t
= (z − 1)

(
λG− µ

∂G

∂z

)
, (2.64)

which is a first order partial differential equation (PDE) and can be solved using the
method of characteristics. However, this is out of our interest; we focus on solving it
at steady state, i.e., ∂G/∂t = 0.

Importantly, equation (2.63) can formally be obtained from (2.55) by way of the
following relations:

E±1 ≡ z∓1, n ≡ z
∂

∂z
, (2.65)

where E±1 is the step operator defined by (2.52). By (2.65), we present the implicit
correspondence between the step operator E and variable z in finding the PDE. More
clearly, the step operator E coincides with the reciprocal of z, whereas E−1 increases
the power of z by one. Notably, relations (2.65) are useful when we deal with
multivariate functions.

At steady state, equation (2.64) turns into an ordinary differential equation (ODE)

∂G

∂z
=
λ

µ
G, (2.66)

which has a solution in the form of

G(z) = C exp

(
λ

µ
z

)
, (2.67)
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where C is a constant to be determined using the normalisation condition (2.60). By
doing so, we obtain

G(z) = exp

(
λ

µ
(z − 1)

)
. (2.68)

Expanding (2.68) in a Taylor series gives

G(z) = exp

(
−λ
µ

) ∞∑
n=0

(λ/µ)n

n!
zn. (2.69)

Comparing (2.69) with (2.56), we recover the steady-state probability distribution as

pn = exp

(
−λ
µ

)
(λ/µ)n

n!
, (2.70)

which is a Poisson distribution. We here note that (2.70) is consistent with (2.51),
which obtained from the set of recursive equations (2.48).

2.6 Stochastic simulation

Although the CME is useful to provide information about the process of interest, its
explicit solution can be stringent to obtain except for some simple cases. Therefore,
one needs efficient numerical methods for simulating the underlying stochastic
process whose description is given by the CME. The stochastic simulation algorithm
(SSA) is one of those methods that is used to generate time trajectories of the
species in a chemical reaction system [4, 3]. Numerous variants of the SSA have
been proposed in the literature [1, 16]. Some of those include the direct method,
the first reaction method, and the next reaction method [17]. However, for systems
with a large number of species, Gillespie’s SSA becomes computationally expensive.
Below, we shall introduce the SSA for the degradation reaction (2.10) and the
two-stage model.

The SSA for the degradation reaction given by (2.10) can be written as follows
[9]. Given that an initial number of species X at time t = 0, we generate a random
number r uniformly distributed in (0, 1). The first task is to determine the time of
next reaction using equation (2.71). Note that ln (1

r

) is exponentially distributed with
unit mean; multiplying this with the inverse of the total reaction rate (here kX(t))
sets the timescale of reaction occurrence. Then the number of X species is decreased
by 1 at time t + τ . This procedure repeats itself until there is no species X left. Two
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Figure 2.4: Sample time trajectories for the degradation and the two-stage model.
Left: Stochastic simulation of the degradation reaction (2.10) plotted for the decay
rate k = 0.1, and the initial number of species is set to 15, i.e., X(0) = 15. Right: A
realisation of two-stage process defined by (2.72) with the rate parameters k2 = k3 =

2. The parameter values for (2.73) are H = 4, a0 = 0.3, a1 = 1.6 and the system size
parameter is Ω = 20.

realisations of SSA for the degradation reaction (2.10) is given in the left panel of
Figure 2.4.

Algorithm 1: SSA for the decay process
1 Start with X(0) = n0 and t = 0.
2 Generate a random number r uniformly distributed in (0, 1).
3 Compute the next reaction time, t+ τ , where

τ =
1

X(t)k
ln

[
1

r

]
. (2.71)

4 Compute X(t+ τ) = X(t)− 1.
Then proceed to Step 2 for time t+ τ .

Now, let us present a more complicated model of a chemical reaction system,
including production and degradation reactions. The model is known as the
two-stage process and is given by the following set of chemical reactions

∅ k1−→ X,

X
k2−→ Y,

Y
k3−→ ∅,

(2.72)

19



Stochastic simulation Preliminaries

occurring at reaction rates k1, k2, and k3, respectively. The epithet two-stage refers
the two stages of a molecule’s lifetime, first denoted by X and then by Y , and should
not be confused with the stages of transcription and translation of a gene expression
model (Section 2.8). The current two-stage model will be generalised and explored
in Chapter 3. In (2.72), the first reaction states that the probability of production of
speciesX at a rate k1 in the time interval [t, t+dt) is equal to k1dt. The second reaction
states that the species X becomes Y with probability k2Xdt during the time interval
(t, t + dt). The last reaction stands for the degradation of Y with a rate constant k3
(cf. (2.10)). The reaction rates k2 = 2 and k3 = 2 are chosen so that production and
degradation rates vary with the number of species as 2X and 2Y , respectively. The
reaction rate k1 is defined by a sigmoid function

k1(X, Y ) = Ω

(
a0 +

a1(X + Y )H

ΩH + (X + Y )H

)
, (2.73)

where H, a0, and a1 are the parameter values, and Ω is the system-size parameter.
The deterministic description of the chemical reactions (2.72) is given in the form

of system of ODEs

dX

dt
= k1(X, Y )− k2X, (2.74)

dY

dt
= k2X − k3Y, (2.75)

subject to initial conditions

X(0) = X0,

Y (0) = Y0,

where X = X(t) and Y = Y (t) denote the number of X and Y species at time t,
respectively. The SSA procedure corresponding to the system of chemical
reactions (2.72) can be given as follows: for a given initial number of species and
time, two random numbers are drawn from a uniform distribution, and the
propensity function of each reaction is calculated. Then the time when the next
reaction occurs is computed via (2.76). Subsequently, a distinct random number r2
is generated to determine which reaction in the system will occur next (see
(2.77)–(2.78)). The fraction αi/α gives the probability that the i-th reaction occurs.
When i-th reaction fires, the number of species is updated accordingly. Here we
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Algorithm 2: SSA for the two-stage model
1 Start with X(0) = n0 and Y (0) = m0 at time t = 0.
2 Generate two random numbers r1 and r2 uniformly distributed in (0, 1).
3 Compute the propensity function of each reaction by

α1 = k1,

α2 = X(t)k2,

α3 = Y (t)k3.

Then, compute α = α1 + α2 + α3.
4 Compute the next reaction time, t+ τ , where

τ =
1

α
ln

[
1

r1

]
. (2.76)

5 Compute the number of molecules at time t+ τ as

X(t+ τ) =


X(t)− 1 if 0 ≤ r2 < α2/α;

X(t) + 1 if α2/α ≤ r2 < (α1 + α2)/α;

X(t) if (α1 + α2)/α ≤ r2 < 1;

(2.77)

and

Y (t+ τ) =


Y (t) + 1 if 0 ≤ r2 < α2/α;

Y (t) if α2/α ≤ r2 < (α1 + α2)/α;

Y (t)− 1 if (α1 + α2)/α ≤ r2 < 1;

(2.78)

Then proceed to Step 2 for time t+ τ .

21



General reaction kinetics Preliminaries

simulated the system of chemical reactions (2.72) by taking the initial number of
species as X(0) = 15 and Y (0) = 15. A plot of this simulation is shown in the right
panel of Figure 2.4. The Python package Gillespy2 was used to generate time
trajectories [18].

2.7 General reaction kinetics

As illustrated in the previous sections, biochemical systems, including gene
expression, can be modelled as chemical reaction networks that contain a variety of
chemical species. In such a network, the copy number of a species denotes the amount
of its population. The chemical reactions represent how the species in a system
interact. Each species has a stoichiometric coefficient denoting the amount of each
constituent that will be degraded or produced in a reaction system. It is typically a
negative number for reactants and is positive for products. Below, we introduce the
fundamental concepts of general reaction kinetics.

Let us consider a set of M chemical reactions involving N species whose copy
numbers at time t are stored in the state vector X(t) =

[
X1(t) X2(t) . . . XN(t)

]⊤
.

When a reaction fires, the copy numbers are updated as per their stoichiometric
coefficients, leading to the net state change in its stoichiometric vector. Once
reaction j occurs, the new state vector is updated as per

X(t) = X(tp) + sj,

where tp denotes the preceding time for the reaction event. The vectors sj, for
j = 1, . . . ,M , are obtained via sj = spj − srj, where srj and spj are the vectors of the
reactant and product stoichiometric coefficients for reaction j, respectively.
Consequently, the stoichiometric matrix S that consists of integer stoichiometric
coefficients can be formed by stacking up the stoichiometric vectors column-wise.
Thus, the resulting matrix is of the size N × M , whose columns correspond to the
reactions, and rows correspond to the compounds. The reactions in a well-mixed
system follow the law of mass action, which states that the probability that i-th
reaction occurs in the time interval [t, t + dt) is proportional to the product of
infinitesimally small time step dt and a function of reactant copy numbers. This is
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typically given by the propensity function fi(X) defined as [19]

fi(X(t)) = k × total combinations in X(t) for each i,

where k is a non-negative constant called as the kinetic rate parameter.
Let us consider the two-stage model (2.72), where we have species X and Y ,

evolving as per the reaction scheme

∅ k1−→ X, X
k2−→ Y, Y

k3−→ ∅, (2.79)

where k1, k2 and k3 are the kinetic rate parameters (or reaction rate constants). In
(2.79), species X is produced from a pool, X becomes Y , and then Y is degraded,
respectively. Let X̃(t) =

[
X(t), Y (t)

]⊤
be the state vector. The propensity functions

read

f1(X̃(t)) = k1, f2(X̃(t)) = k2X(t) and f3(X̃(t)) = k3Y (t). (2.80)

Here we note that the propensity function f1(X̃(t)) = k1 is specifically defined by
(2.73) for the two-stage model. The stoichiometric vectors are given by

s1 =

1
0

 , s2 =

−1

1

 , s3 =

 0

−1

 , (2.81)

which form the stoichiometric matrix

S =

1 −1 0

0 1 −1

 .
The probability P (x, t) of having x =

[
x1 . . . xN

]
molecules at time t satisfies

the (general form of the) CME

dP (x, t)

dt
=

M∑
j=1

fj(x− sj)P (x− sj, t)− P (x, t)
M∑
j=1

fj(x), (2.82)

where sj is the j-th column of the stoichiometric matrix S [20, 21]. Note that P (x, t)
is a function ofN integers, i.e. x1, x2, . . . , xN , and of a continuos variable t. Therefore,
we write ordinary derivatives instead of partial derivatives. Equation (2.82) can be
rewritten as

dP (x, t)

dt
=

M∑
j=1

(
N∏
i=1

E−Sij

i − 1

)
fj(x)P (x, t), (2.83)
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where the step operators E−Sij

i [10, 14] are defined on a general function g by

E−Sij

i g(x1, . . . , xi, . . . , xN) = g(x1, . . . , xi − Sij, . . . , xN).

For the specific model (2.79), inserting (2.80) and (2.81) into (2.82) gives the CME

dP (x, y, t)

dt
=k1P (x− 1, y, t) + k2(x+ 1)P (x+ 1, y − 1, t)

+ k3(y + 1)P (x, y + 1, t)− (k1 + k2x+ k3y)P (x, y, t).

(2.84)

Denoting by E1 and E2 the step operators in the variables x and y, the CME (2.84)
can then be recast as

dP (x, y, t)

dt
= k1(E−1

1 − 1)P + k2(E1E−1
2 − 1)xP + k3(E2 − 1)yP. (2.85)

In the next section, we will briefly introduce the gene expression process and its
corresponding mathematical model.

2.8 Gene expression

Gene expression is a process by which the information in DNA is transformed via
cellular machinery into functional gene products such as mRNA and protein [2]. The
process comprises two key steps, transcription and translation, whose control plays
an essential role in producing a protein molecule. Transcription is conducted by an
RNA polymerase enzyme, leading to the creation of an RNA transcript called
messenger RNA (mRNA) from the DNA in a gene. After the mRNA has copied the
transcribed information from the DNA, translation, the second major step, in which
the mRNA is read to form a sequence of amino acids during the protein-making
process, takes place. In addition, the levels of gene products, i.e. mRNA and protein,
determine the fate of cells and give rise to variation in the cell population.
Therefore, quantifying the amount of these molecules is a question of intense
research. Although gene expression is a far more complex process, we here make a
simplified description of the model as elementary reactions. We neglect processes
such as the binding of ribosomes and RNA polymerase; we focus on the simplest case
in which the model incorporates transcription, translation, and decay reactions.
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The two-stage model The dynamics of the two-stage gene-expression model is
given by the reaction scheme [22]

∅ λ1−→ mRNA, mRNA
γ1−→ ∅,

mRNA
λ2−→ mRNA+ protein, protein

γ2−→ ∅,
(2.86)

where λ1 is the mRNA production rate, λ2 is the protein translation rate, and γ1 and
γ2 are the decay rate constants of mRNA and protein species, respectively. Here and
below, 1 and 2 in the subscript indicate the mRNA and protein species, respectively.

The deterministic description of the reaction system (2.86) is given by

dM

dt
= λ1 − γ1M,

dN

dt
= λ2M − γ2N, (2.87)

where M and N denote the levels of mRNA and protein, respectively. Given that an
initial condition, an explicit solution to the system (2.87) can be obtained [22].

In the stochastic context, the probability P (m,n, t) of observing m mRNA and n
protein molecules at time t satisfies the CME

dP (m,n, t)

dt
=λ1(P (m− 1, n, t)− P (m,n, t)) + γ1((m+ 1)P (m+ 1, n, t)

−mP (m,n, t)) + λ2m(P (m,n− 1, t)− P (m,n, t))

+ γ2((n+ 1)P (m,n+ 1, t)− nP (m,n, t)),

(2.88)

subject to initial condition
p(m,n, 0) = δm,m0δn,n0 , (2.89)

where δi,j represents the Kronecker delta symbol, which is one if i = j and zero
otherwise; m0 and n0 are the initial mRNA and protein amounts, respectively. Note
that equation (2.88) can be rewritten in a more compact form as

dP

dt
= λ1(E−1

1 − 1)P + γ1(E1 − 1)mP + λ2m(E−1
2 − 1)P + γ2(E2 − 1)nP, (2.90)

where E1 and E2 are the step operators in the variables m and n, respectively.
In what follows, we are interested in finding a solution to the CME (2.88). To that

end, let us define by
G(x, y, t) =

∑
m

∑
n

xmynP (m,n, t)

the generating function. Then the CME (2.88) can be transformed into the PDE for
the generating function of the stationary distribution, which is given by (see [22] for
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details)

∂G

∂t
= λ1(1− x)G+ (γ1(x− 1) + λ2x(1− y))

∂G

∂x
+ γ2(y − 1)

∂G

∂y
. (2.91)

Note that (2.91) can formally be obtained from (2.90) by the following transformation
rules: P ≡ G; E±1

1 ≡ x∓1; E±1
2 ≡ y∓1; m ≡ x ∂

∂x
; n ≡ y ∂

∂y
(cf. Eq. (2.65)).

At steady state, equation (2.91) reads

(γ1(x− 1) + λ2x(1− y))
∂G

∂x
+ γ2(y − 1)

∂G

∂y
= λ1(x− 1)G. (2.92)

An analytical solution to (2.92) has been obtained in [22] as

G(x, y) = exp

(
αβ

∫ y

1

M (1, 1 + λ, β(s− 1)) ds+ α(x− 1)M (1, 1 + λ, β(y − 1))

)
,

(2.93)
where

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!

is Kummer’s function [23], (x)n = x(x+1)(x+2) . . . (x+n−1)which for (x)0 = 1 is the
rising factorial (or Pochhammer symbol), and α = λ1/γ1, β = λ2/γ2, and λ = γ1/γ2.

The results and fundamental concepts given in this chapter will be used in the
following chapters. In particular, we shall focus on a gene expression model consisting
of complex lifetime pathways in the subsequent chapter.
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Chapter3
Multiclass–multistage model

In this chapter, we consider a stochastic gene-expression model for a self-regulating
transcription factor whose lifespan (or time till degradation) follows a general
distribution modelled as per a multi-dimensional phase-type process. We show that
at steady state the protein copy-number distribution is the same as in a
one-dimensional model with exponentially distributed lifetimes. This invariance
result holds only if molecules are produced one at a time: we provide explicit
counterexamples in the bursty production regime. Additionally, we consider the case
of a bistable genetic switch constituted by a positively autoregulating transcription
factor. The switch alternately resides in states of up- and downregulation and
generates bimodal protein distributions. In the context of our invariance result, we
investigate how the choice of lifetime distribution affects the rates of metastable
transitions between the two modes of the distribution. The phase-type model, being
non-linear and multi-dimensional whilst possessing an explicit stationary
distribution, provides a valuable test example for exploring dynamics in complex
biological systems.

The content of this chapter has been published in Lecture Notes in Computer Science,
vol 12314, pp. 27–43. Springer, 2020 [24].

3.1 Introduction

Biochemical processes at the single-cell level involve molecules such as transcription
factors that are present at low copy numbers [25, 26]. The dynamics of these
processes is well described by stochastic Markov processes in continuous time with
discrete state space [27, 28, 29]. While few-component or linear-kinetics
systems [30] allow for exact analysis, in more complex system one often uses
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approximative methods [31], such as moment closure [32], linear-noise
approximation [33, 34], hybrid formulations [35, 36, 37], and multi-scale
techniques [38, 39].

In simplest Markovian formulations, the lifetime of a regulatory molecule is
memoryless, i.e. exponentially distributed [22, 40]. However, non-exponential decay
patterns have been observed experimentally for both mRNA transcripts and
proteins [7, 8]. Therefore, in this chapter we shall consider lifetime distributions
that can assume far more complex forms than the simple exponential. Previous
studies of gene-expression models with delayed degradation also provide examples
of non-exponential lifetime distributions [41, 42].

In Section 3.2, we formulate, both in the deterministic and stochastic settings, a
one-dimensional model for the abundance of a transcription factor with a
memoryless lifetime. Since many transcription factors regulate their own gene
expression [43], we allow the production rate to vary with the copy number. We
show that the deterministic solutions tend to the fixed points of the feedback
response function; in the stochastic framework, we provide the stationary
distribution of the protein copy number.

In Section 3.3, we characterise the steady-state behaviour of a structured model
that accounts for complex lifetime pathways. The model is multidimensional, each
dimension corresponding to a different class and stage of a molecule’s lifetime; the
chosen structure accounts for a wide class of phase-type lifetime distributions [44,
45]. We demonstrate that the deterministic fixed points and the stochastic stationary
distribution that were found for the one-dimensional framework remain valid for the
total protein amount in the multi-dimensional setting.

We emphasise that the distribution invariance result rests on the assumption of
non-bursty production of protein. The case of bursty production is briefly discussed in
Section 3.4, where explicit counter-examples are constructed by means of referring
to explicit mean and variance formulae available from literature for systems without
feedback [46, 47].

In the final Section 3.5, we approximate the stochastic protein distribution by a
mixture of Gaussians with means at deterministic fixed points and variances given
by the linear-noise approximation [10, 48]. Additionally, we study the rates of
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X X + 1X − 1

X/τ f(X)/τ

Figure 3.1: A diagram of the one-dimensional model. The number of molecules X
can decrease by one or increase by one. The stochastic rates (or propensities) of these
transitions are indicated above the transition edges.

metastable transitions [49, 50] between the Gaussian modes in the one-dimensional
and structured settings.

3.2 One-dimensional model

Deterministic framework. The dynamics of the abundance of protein X at time t
can be modelled deterministically by an ordinary differential equation

dX

dt
= τ−1 (f(X)−X) , (3.1)

which states that the rate of change in X is equal to the difference of production and
decay rates. The decay rate is proportional to X; the factor of proportionality is the
reciprocal of the expected lifetime τ . The rate of production per unit protein lifetime
is denoted by f(X) in (3.1); the dependence of the production rate on the protein
amount X implements the feedback in the model. Equating the right-hand side of
(3.1) to zero yields

f(X) = X, (3.2)

meaning that steady states of (3.1) are given by the fixed point of the production
response function f(X).

Stochastic framework. The stochastic counterpart of (3.1) is the Markov process
with discrete states X ∈ N0 in continuous time with transitions X → X − 1 or
X → X + 1, occurring with rates X/τ and f(X)/τ respectively (see the schematic in
Figure 3.1). Note that in case of a constant production rate, i.e. f(X) ≡ λ, the model
turns into the immigration-and-death process [51]; in queueing theory this is also
known as M/M/∞ queue [12], (see also Section 2.4). The stationary distribution of
the immigration–death process is known to be Poissonian with mean equal to λ [51].
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For a system with feedback, the probability P (X, t) of having X molecules at time
t satisfies the master equation

dP (X, t)

dt
= τ−1

(
E−1 − 1

)
f(X)P (X, t) + τ−1 (E− 1)XP (X, t), (3.3)

in which E is the van-Kampen step operator [10]. Inserting P (X, t) = π(X) into (3.3)
and solving the resulting difference equation, one finds a steady-state distribution in
the explicit form

π(X) = π(0)

∏X−1
k=0 f(k)

X!
. (3.4)

The probability π(0) of having zero molecules plays the role of the normalisation
constant in (3.4), which can be uniquely determined by imposing the normalisation
condition π(0) + π(1) + . . . = 1. Note that inserting f(X) ≡ λ into (3.4) results in the
aforementioned Poissonian distribution with π(0) = e−λ.

3.3 Multiclass–multistage model

In this section, we introduce a structured multiclass–multistage model which is an
extension of one-dimensional model introduced in the previous section. The
fundamentals of the multidimensional model are as shown in Figure 3.2. A newly
produced molecule is assigned into one of K distinct classes. Which class is selected
is chosen randomly according to a discrete distribution p1, . . . , pK . The lifetime of a
molecule in the i-th class consists of Si stages. The holding time in any of these
stages is memoryless (exponential), and parametrised by its mean τij, where i

indicates which class and j indicates which stage. Note that

τ =
K∑
i=1

Si∑
j=1

piτij (3.5)

gives the expected lifetime of a newly produced molecule. After the last (Si-th) stage,
the molecule is degraded. The total distribution of a molecule lifetime is a mixture,
with weights pi, of the lifetime distributions of the individual classes, each of which is a
convolution of exponential distributions of the durations of the individual stages; such
distributions are referred to as phase-type distribution and provide a wide family of
distribution to approximate practically any distribution of a positive random variable
[44].
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Figure 3.2: A schematic representation of multiclass–multistage model. A newly
produced molecule is randomly assigned, according to a prescribed distribution
p1, . . . , pK , into one of K distinct classes. The lifetime of a molecule in the i-th class
consists of Si consecutive memoryless stages, and ends in the degradation of the
molecule. The expected holding time in the j-th stage of the i-th class is τij. The
production rate is a function of the total number ∥X∥ of molecules across all stages
and classes.
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We denote by Xij the number of molecules in the i-th class and the j-th stage of
their lifetime, by

X = (X11, . . . , X1S1 , X21, . . . , X2S2 , . . . , XK1, . . . , XKSK
)

the∑K
i=1 Si-dimensional copy-number vector, and by

∥X∥ =
K∑
i=1

Si∑
j=1

Xij (3.6)

the total number of molecules across all classes and stages.

Deterministic framework. The deterministic description of the structured model is
given by a system of coupled ordinary differential equations

dXi1

dt
=
pif (∥X∥)

τ
− Xi1

τi1
, i = 1, . . . , K, (3.7)

dXij

dt
=
Xij−1

τij−1

− Xij

τij
, i = 1, . . . , K and j = 2, . . . , Si. (3.8)

The right-hand sides of (3.7)–(3.8) are each equal to the difference of appropriate
arrival and departure rates at/from a particular compartment of the structured model.
The departure rates are proportional to the number of molecules in the compartment,
with the reciprocal of the holding time giving the factor of proportionality. The arrival
rate takes a different form for the first stages (3.7) and for the other stages (3.8). For
the first stage, the arrival is obtained by the product of the production rate f(∥X∥)/τ

and the probability pi of selecting the i-th class. For the latter stages, the arrival rate
is equal to the departure rate of the previous stage.

Equating (3.7)–(3.8) to zero, we find that

pif (∥X∥)
τ

=
Xi1

τi1
=
Xi2

τi2
= . . . =

Xij

τij
(3.9)

hold at steady state, from which it follows that

Xij =
piτijf (∥X∥)

τ
. (3.10)

Summing (3.10) over i = 1, . . . , K and j = 2, . . . , Si, and using (3.5) and (3.6), yield

∥X∥ = f (∥X∥) (3.11)
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for the total protein amount (3.6). Thus, the protein amount at steady state is
obtained, like in the one-dimensional model, by calculating the fixed points of the
feedback response function.

Combining (3.11) and (3.9) we find

Xij =
piτij∥X∥

τ
, (3.12)

which means that at steady state the total protein amount is distributed among the
compartments proportionally to the product of class assignment probability and the
mean holding time of the particular compartment.

Stochastic framework. Having demonstrated that the stationary behaviour of the
one-dimensional and the structured multi-dimensional models is the same in the
deterministic framework, we next aim to demonstrate that the same is also true in
the stochastic context. Prior to turning our attention to the feedback system, it is
again instructive to discuss the case without regulation, i.e. f(∥X∥) ≡ λ; the new
molecule arrivals are then exponentially distributed. In the language of queueing
theory, the process can be reinterpreted as the M/G/∞ queue with exponential
arrivals of customers, a general phase-type distribution of service times, and an
infinite number of servers. It is well known that the steady-state distribution of an
M/G/∞ queue is Poisson with mean equal to λ [52]. Thus, without feedback, we
obtain the very same Poisson(λ) distribution that applies in the one-dimensional
case.

In the feedback case, the probability P (X, t) of having X = (X11, . . . , XK,SK
) copy

numbers in the individual compartments at any time t satisfies the master equation

dP (X, t)

dt
=τ−1

K∑
i=1

pi
(
E−1

i1 − 1
)
f(∥X∥)P (X, t) (3.13)

+
K∑
i=1

Si−1∑
j=1

τ−1
ij

(
EijE−1

ij+1 − 1
)
XijP (X, t) (3.14)

+
K∑
i=1

τ−1
iSi

(EiSi
− 1)XiSi

P (X, t). (3.15)

The right-hand-side terms (3.13), (3.14), and (3.15) stand for the change in
probability mass function due to the production, moving to next stage, and decay
reactions, respectively. Note that Eij is a step operator which increases the copy

33



Multiclass–multistage model Multiclass–multistage model

number of molecules in the i-th class at the j-th stage by one [10]. Likewise, E−1
ij

decreases the same copy number by one. Rearrangement of terms in the master
equation yields

dP (X, t)

dt
=

K∑
i=1

(
τ−1piE−1

i1 f(∥X∥)P (X, t)− τ−1
i1 Xi1P (X, t)

)
+

K∑
i=1

Si−1∑
j=1

(
τ−1
ij EijE−1

ij+1XijP (X, t)− τ−1
ij+1Xij+1P (X, t)

)
+

K∑
i=1

τ−1
iSi

EiSi
XiSi

P (X, t) − τ−1f(∥X∥)P (X, t).

Equating the derivative to zero, we derive for the stationary distribution π(X) an
algebraic system

0 =
K∑
i=1

(
τ−1piE−1

i1 f(∥X∥)π(X)− τ−1
i1 Xi1π(X)

)
+

K∑
i=1

Si−1∑
j=1

(
τ−1
ij EijE−1

ij+1Xijπ(X)− τ−1
ij+1Xij+1π(X)

)
+

K∑
i=1

τ−1
iSi

EiSi
XiSi

π(X) − τ−1f(∥X∥)π(X).

(3.16)

Clearly, it is sufficient that

τ−1piE−1
i1 f(∥X∥)π(X) = τ−1

i1 Xi1π(X),

τ−1
ij EijE−1

ij+1Xijπ(X) = τ−1
ij+1Xij+1π(X),

K∑
i=1

τ−1
iSi

EiSi
XiSi

π(X) = τ−1f(∥X∥)π(X)

(3.17)

hold for π(X) in order that (3.16) be satisfied. One checks by direct substitution that

π(X) ∝
∥X∥−1∏
k=0

f(k)×
K∏
i=1

Si∏
j=1

(piτij/τ)
Xij

Xij!
(3.18)

satisfies equations in (3.17); therefore, (3.18) represents the stationary distribution of
the structured model. In order to interpret (3.18), we condition the joint distribution
on the total protein copy number, writing

π(X) = πcond(X | ∥X∥)πtot(∥X∥), (3.19)

in which the conditional distribution is recognised as the multinomial [15]

πcond(X | ∥X∥) =
(
∥X∥
X

) K∏
i=1

Si∏
j=1

(piτij/τ)
Xij , (3.20)
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and the total copy number distribution is given by

πtot(∥X∥) = πtot(0)

∏∥X∥−1
k=0 f(k)

∥X∥!
. (3.21)

By (3.20), the conditional means ofXij coincide with the deterministic partitioning of
the total copy number (3.12). Importantly, comparing (3.21) to (3.4), we conclude
that the one-dimensional and multi-dimensional models generate the same (total)
copy number distributions.

3.4 Bursting

The independence of stationary distribution on the lifetime distribution relies on the
assumption of non-bursty production of protein that has implicitly been made in our
model. In this section, we allow for the synthesis of protein in bursts of multiple
molecules at a single time [53, 54]. Referring to previously published results
[46, 47], we provide a counterexample that demonstrates that in the bursty case
different protein lifetime distributions can lead to different stationary copy-number
distributions. The counterexample can be found even in the absence of feedback.

Bursty production means that the number of molecules can increase within an
infinitesimally small time interval of length dt from X to X + j, where j ≥ 1, with
probability λτ−1bjdt, in which λ is the burst frequency (a constant in the absence of
feedback), τ is the mean protein lifetime, and bj = Prob[B = j] is the probability
mass function of the burst size B. Protein molecules degrade independently of one
another. The distribution of their lifetime T can in general be described by the survival
function G(t) = Prob[T > t]; the mean lifetime thereby satisfies

τ = −
∫ ∞

0

tG′(t)dt =

∫ ∞

0

G(t)dt. (3.22)

The copy protein number X at a given time is given by the number of products that
have been produced in a past burst and survived until the given time; this defines a
random process, cf. [46], whose steady-state moments are provided below. In
queueing theory, bursty increases in the state variable are referred to as batch
customer arrivals. Specifically, a bursty gene-expression model without feedback and
with general lifetime distribution corresponds to the MX/G/∞ queue with
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memoryless (exponential) batch arrivals, general service distribution, and an infinite
number of servers.

Previous analyses [46, 47] show that the steady-state protein mean ⟨X⟩ and the
Fano factor F = Var(X)/⟨X⟩ are given by

⟨X⟩ = λ⟨B⟩, F = 1 +Ks

(
⟨B2⟩
⟨B⟩

− 1

)
, (3.23)

where
Ks =

∫∞
0
G2(t)dt

τ
(3.24)

is referred to as the senescence factor. Elementary calculation shows that Ks = 1/2

if the lifetime distribution is exponential with survival function G(t) = e−t/τ and that
Ks = 1 if the lifetime distribution is deterministic with survival function G(t) = 1 for
t < τ and G(t) = 0 for t ≥ τ . Thus, although two lifetime distributions result in the
same value of the stationary mean protein copy number, they give a different value of
the noise (the Fano factor); therefore the copy-number distributions are different.

3.5 Metastable transitioning

Transcription factors that self-sustain their gene expression by means of a positive
feedback loop can act as a simple genetic switch [55, 56]. A positive-feedback switch
can be in two states, one in which the gene is fully activated through its feedback
loop, while in the other the gene is expressed at a basal level. The switch serves as a
basic memory unit, retaining the information on its initial state on long timescales,
and very slowly relaxing towards an equilibrium distribution. It is therefore
important to investigate not only the stationary, but also transient distributions,
which are generated by a positively autoregulating transcription factor.

Following previous studies [57, 58, 59], we model positive feedback by the Hill
function response curve

f(X) = Ω

(
a0 +

a1X
H

ΩH +XH

)
, (3.25)

in which a0 and a1 represent the basal and regulable production rates, H is the
cooperativity coefficient, and Ω gives the critical amount of protein required for
half-stimulation of feedback. Provided that H > 1, one can find a0 and a1 such that
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Figure 3.3: Left: A sigmoid feedback response function (blue curve) intersects the
diagonal (orange line) in multiple fixed points. Ones that are stable to the rate
equation (3.1) (full circles) are interspersed by unstable ones (empty circle). Right:
The potential u(x), defined by (3.33), is a Lyapunov function of the rate equation
(3.1). The local minima, or the troughs/wells, of the potential are situated at its
stable fixed points; the local maximum, or the barrier, of the potential coincides
with the unstable fixed point. Parameter values for both panels: We use the Hill-type
response (3.25) with a0 = 0.3, a1 = 1.6, H = 4, Ω = 50.

(3.25) possesses three distinct fixed points X− < X0 < X+, of which the central is
unstable and the other two are stable (Figure 3.3, left). The two stable fixed points
provide alternative large-time outcomes of the deterministic models (3.1) and
(3.7)–(3.8).

Bistability of deterministic models translates into bimodal distributions in the
stochastic framework. For large values of Ω, the bimodal protein distribution can be
approximated by a mixture of Gaussian modes which are located at the stable fixed
points X± (see Figure 3.4), cf. [10, 48],

P (X, t) ∼ p−(t)
e
− (X−X−)2

2σ2
−

√
2πσ−

+ p+(t)
e
− (X−X+)2

2σ2
+

√
2πσ+

. (3.26)

The mixture approximation (3.26) is determined not only by the locations X±, but
also on the variances σ2

± and the weights p±(t) of the two modes (which are given
below). The weights in (3.26) are allowed to vary with time in order to account for
the slow, metastable transitions that occur between the distribution modes.

The invariance result for stationary distributions derived in the preceding
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Figure 3.4: Exact stationary protein distribution (3.4) and the Gaussian-mixture
approximation (3.26) in varying system-size conditions. The means of the Gaussians
are given by the stable fixed points of f(X); the variances are given by linear-noise
approximation (3.27). The mixture weights are given by p+(∞) = T+/(T+ + T−),
p−(∞) = T−/(T+ + T−), where the residence times are given by the Arrhenius-type
formula (3.32). We use a Hill-type response (3.25) with a0 = 0.3, a1 = 1.6, H = 4,
and Ω shown in panel captions.

sections implies that, in the limit of t → ∞, the protein distribution (3.26) becomes
independent of the choice of the protein lifetime distribution. In particular, the same
variances σ2

± and the same limit values p±(∞) of the weights will apply for
exponentially distributed and phase-type decay processes. In what follows, we first
consult literature to provide results σ2

± and p±(t) that apply for the one-dimensional
model with exponential decay. Next, we use stochastic simulation to investigate the
effect of phase-type lifespan distributions on the relaxation rate of p±(t) to the
stationary values.

The variances of the modes are obtained by the linear-noise approximation [60,
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61] of the master equation (3.3), which yields

σ2
± =

X±

1− f ′(X±)
; (3.27)

the right-hand side of (3.27) is equal to the ratio of a fluctuation term (equal to the
number of molecules) to a dissipation term (obtained by linearising the rate equation
(3.1) around a stable fixed point).

The metastable transitions between the distribution modes can be described by a
random telegraph process (cf. Figure 3.5, left), cf. [11],

⊖
1/T−−−−⇀↽−−−
1/T+

⊕, (3.28)

in which the lumped states ⊖ and ⊕ correspond to the basins of attractions of the two
stable fixed points; T− and T+ are the respective residence times. The mixture weights
p−(t) and p+(t) in (3.26) are identified with the probabilities of the lumped states in
(3.28); these satisfy the Chapman–Kolmogorov equations [62]

dp−
dt

= −p−
T−

+
p+
T+
,

dp+
dt

=
p−
T−

− p+
T+
, (3.29)

which admit an explicit solution

p+(t) =
T+

T+ + T−
+

(
p+(0)−

T+
T+ + T−

)
exp

(
−
(

1

T+
+

1

T−

)
t

)
, (3.30)

p−(t) =
T−

T+ + T−
+

(
p−(0)−

T−
T+ + T−

)
exp

(
−
(

1

T+
+

1

T−

)
t

)
. (3.31)

The initial probability p+(0) = 1 − p−(0) is set to one or zero in (3.30)–(3.31)
depending on whether the model is initialised in the neighbourhood of the upper or
the lower stable fixed point.

With (3.30)–(3.31) at hand, the problem of determining the mixture weights in
(3.26) is reduced to that of determining the residence times T±. Previous
large-deviation and WKB analyses of the one-dimensional model [63, 64, 65]
provide an Arrhenius-type formula

T± = 2πτX−1
± σ±

√
−σ2

0 exp(u(X0)− u(X±)). (3.32)

Formula (3.32) features, on top of the familiar symbols (the mean lifetime τ , fixed
points X± and X0, linearised variances σ±, and the Ludolph-van-Ceulen constant π),
two new symbols: a value σ2

0 and a function u(X). The value σ2
0 is readily calculated
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Figure 3.5: Left: Large-time stochastic trajectories of a structured two-class model
with parameters as given below. The horizontal lines represent deterministic fixed
points as given by (3.11)–(3.12). Right: The number of trajectories, out of 104

simulation repeats, that reside in the basin of attraction of the upper stable fixed
point as function of time. Simulation is initiated at the upper stable fixed point
(the decreasing function) or at the lower stable fixed point (the increasing function).
The dashed black curve gives the theoretical probability (3.30) with initial condition
p+(0) = 1 (the decreasing solution) or p+(0) = 0 (the increasing solution). Parameter

values: The Hill-function parameters are: Ω = 50, H = 4, a0 = 0.3, a1 = 1.6. The
mean lifetime is τ = 1. The two-stage model parameters are: K = 1, p1 = 1, S1 = 2,
τ11 = τ12 = 0.5. The two-class model parameters are: K = 2, p1 = 1/6, p2 = 5/6,
S1 = S2 = 1, τ11 = 3, τ21 = 3/5.

by inserting 0 instead of ± into the fluctuation–dissipation relation (3.27); note that
for the unstable fixed point X0, the denominator in (3.27) is negative (cf. Figure 3.3,
left), which renders the whole fraction also negative.

In analogy with the Arrhenius law, the function u(X) represents an “energy” of
state X, and is given here explicitly by an indefinite integral [63, 64, 65]

u(X) =

∫
ln

(
X

f(X)

)
dX. (3.33)

Note that the derivative of (3.33),

u′(X) = ln

(
X

f(X)

)
, (3.34)

is zero if f(X) = X, i.e. at the fixed points of the feedback response function, is
negative if f(X) > X and positive if f(X) < X. Substituting into (3.33) the solution
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X = X(t) to the deterministic rate equation (3.1) and evaluating the time derivative,
we find

du(X(t))

dt
= u′(X(t))

dX(t)

dt
= τ−1(f(X)−X) ln

(
X

f(X)

)∣∣∣∣
X=X(t)

≤ 0, (3.35)

with equality in (3.35) holding if and only if X is a fixed point of the feedback
response function f(X). Therefore, the energy function u(X) is a Lyapunov function
of the ordinary differential equation (3.1) (Figure 3.3, right). The exponentiation in
(3.32) dramatically amplifies the potential difference between the stable and the
unstable fixed points. For example, a moderately large potential barrier, say 5

(which is about the height of the potential barrier in Figure 3.3, right), introduces a
large factor e5 ≈ 150 in (3.32). This confirms an intuition that metastable transitions
between the distribution modes are very (exponentially) slow.

The random telegraph solution (3.30) is compared in Figure 3.5 to the residence
of stochastically generated trajectories in the basin of attraction of the upper fixed
point. The agreement is close for simulations of the one-dimensional model (with an
exponential lifetime) and for a structured model with one class and two stages (with
an Erlangian lifetime). For a two-class model (with an exponential mixture
lifetime), the transitioning also occurs on the exponentially slow timescale, but is
perceptibly slower. Sample trajectories were generated in Python’s package for
stochastic simulation of biochemical systems GillesPy2 [18]. The one-dimensional
model was initiated with ⌊X+⌋ molecules. The two species in the two-stage and
two-class models were initiated to S and ⌊X+⌋ − S, where S was drawn from the
binomial distribution Binom(⌊X+⌋, 0.5).

3.6 Discussion

In this chapter we studied a stochastic chemical reaction system for a self-regulating
protein molecule with exponential and phase-type lifetimes. We demonstrated that
the exponential and phase-type models support the same stationary distribution of
the protein copy number. While stationary distributions of similar forms have
previously been formulated in the context of queueing theory [12, 66, 67], this
chapter provides a self-contained and concise treatment of the one-dimensional
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model and the multi-dimensional structured model that is specifically tailored for
applications in systems biology.

We showed that the invariance result rests on the assumption of non-bursty
production of protein. We have demonstrated that, in the presence of bursts,
exponential and deterministic lifetimes generate stationary protein-level
distributions with different variances.

Deterministic modelling approaches are used in systems biology as widely as
stochastic ones. Therefore, we complemented the stationary analysis of the
stochastic Markov-chain models by a fixed-point analysis of deterministic models
based on differential equations. The result is that, irrespective of lifetime
distribution, the deterministic protein level is attracted, for large times, to the stable
fixed points of the feedback response function. Connecting the stochastic and
deterministic frameworks, we demonstrated that the stationary distribution of the
Markovian model is sharply peaked around the fixed points of the deterministic
equation. We showed that the distribution can be approximated by a mixture of
Gaussian modes with means given by the deterministic fixed points and variances
that are consistent with the traditional linear-noise analysis results.

Next, we focused on the transitions between the distribution modes. These occur
rarely with rates that are exponentially small. We compared an asymptotic result,
derived in previous literature for the one-dimensional model, to stochastic simulation
results of the one-dimensional model and two specific structured models: we chose a
model with one class and two stages and amodel with two classes each with one stage.
The simulation results of the one-dimensional and two-stage models agreed closely to
the theoretical prediction; intriguingly, the agreement with theory was closer for the
two-stage model. On the other hand, a two-class model showed slower transitioning
rates. The theoretical asymptotic results have been derived in [63, 64, 65] only for
the one-dimensional model. Large deviations in multi-dimensional models are much
harder to quantify than one-variable ones. We believe that the current model, being
multi-dimensional while possessing a tractable steady-state distribution, provides a
convenient framework on which such methodologies can be developed.

In summary, our study provides an invariance-on-lifetime-distribution result in the
deterministic and stochastic contexts for a non-bursty regulatory protein. While the
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main results concern the stationary behaviour, our study also performs simulation,
and opens avenue for future enquiries, into the transient transitioning dynamics.
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Chapter4
The extended two-stage model

This chapter presents a two-stage stochastic gene expression model that extends the
standard model by an mRNA inactivation loop. The extended model considers that
mRNA molecules can transition between their active/inactive states. We provide an
extensive mathematical analysis of the joint steady-state distribution of active and
inactive mRNA and protein species. We determine its generating function and derive
a recursive formula for the protein distribution. In addition to obtaining the
stationary means from the deterministic model, we calculate the steady-state Fano
factor and express it as a function of the model parameters. Additionally, we use the
analytical formula for the generating function to determine the marginal distribution
for each species. The results of the analytical formula are then cross-validated by
kinetic Monte-Carlo simulation.

The contents of this chapter have been published in Lecture Notes in Computer

Science, vol 12881, pp. 215–229. Springer, 2021 [68].

4.1 Introduction

As many other biochemical mechanisms, gene expression in which protein synthesis
occurs is inherently stochastic due to random fluctuations in the copy number of
gene products, e.g. proteins [2]. From the viewpoint of biochemical reactions, in
simplest formulations, gene expression consists of two main steps: transcription and
translation. While RNA polymerase enzymes produce mRNA molecules in the
former, protein synthesis takes place by ribosomes in the latter, each reaction
corresponding to the production and decay of relevant species. Additionally, the
two-stage model can be extended by the regulation of transcription factors, which
affect gene expression by modulating the binding rate of RNA polymerase [69].
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Over the last decades, the two-stage model of gene expression has been extensively
studied to understand how the stochastic phenomenon in cellular processes takes
place [70, 71, 21, 72]. Specifically, quantifying the number of species in terms of
probability distributions has become an interesting and challenging endeavour due to
the subtleties involved in finding a solution to the underlying problem. On the other
hand, the fluctuations in mRNA and protein levels are considered as a major source of
noise, leading to cell-to-cell variability in gene regulatory networks [73, 74, 75, 76,
77, 6, 78]. The noise emerges from different sources, namely intrinsic and extrinsic

noise [79, 80]; yet, structural elements such as stem-loops can also contribute to
noise by forming in an untranslated region of mRNA [81]. The untranslated regions
of mRNAs often contain these stem-loops that can reversibly change configurations
making individual mRNAs translationally active/inactive.

Numerous modelling approaches have been proposed based on deterministic and
stochastic frameworks, including the hybrid ones as a combination of the preceding
two [82, 83, 84]. Only a few of those provide an explicit solution to the two-stage
gene-expression model [22, 72]; most of the studies are based on Monte Carlo
simulations, which are usually computationally expensive.

As a generalisation of the two-stage model, some studies in the literature consider
a set of multiple gene states and investigate the dynamics of stochastic transitions
among these states [85, 86]. Nevertheless, to the best of our knowledge, none of these
studies takes anmRNA inactivation into account. Here we extend the two-stagemodel
by an mRNA inactivation loop, by which we mean that after transcription species
can switch between active and inactive states. In other words, there exists a pair
of reversible chemical reactions occurring at constant rates by turning active mRNA
species into inactive ones, and vice versa. Subsequently, the active mRNA is translated,
while the inactive mRNA stays dormant. The schematic of reactions describing the
model is given in (4.1). Here we thereafter refer to the aforementioned model as
the extended model. A possible biological scenario that can implement this extended
model is by a regulatory RNA that temporarily blocks mRNA function [87].

This chapter is organised as follows. In Section 4.2, the stationary means of
active mRNA, inactive mRNA, and protein are obtained from a deterministic
formulation the model; the master equation of the stochastic model is formulated,
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and transformed into a partial differential equation for the generating function. In
Section 4.3, the partial differential equation is transformed into one for the factorial
cumulant generation function and a power series solution is found; recursive
expressions for the coefficients — the factorial cumulants of the three molecular
species — are thereby provided. In Section 4.4, the protein Fano factor is expressed
in terms of the first two factorial cumulants, which will be used in the subsequent
chapter to analyse the noise-reduction effect of the mRNA inactivation loop. The
generating function of the stationary distribution of active mRNA, inactive mRNA
and protein amounts is represented in the special-function form in Section 4.5. The
marginal protein and active and inactive mRNA distributions are derived in Section
4.6. The chapter is concluded in Section 4.7.

4.2 Model formulation

The extended model involves three species, mRNA, inactive mRNA (imRNA for short),
and protein, and consists of the reactions

∅
λ1−⇀↽−
γ1

mRNA, mRNA
α−⇀↽−
β
imRNA, imRNA

γ̃1−→ ∅,

mRNA
λ2−→ mRNA+ protein, protein

γ2−→ ∅.
(4.1)

The reactions in (4.1) correspond to mRNA transcription and decay, mRNA
activation and inactivation, inactive mRNA decay, protein translation, and protein
decay, respectively.

Due to the linearity of kinetics in (4.1), the mean levels of the mRNA (m), inactive
mRNA (m̃) and protein (n) exactly satisfy the system of deterministic rate equations

d⟨m⟩
dt

= λ1 − (γ1 + α)⟨m⟩+ β⟨m̃⟩,

d⟨m̃⟩
dt

= α⟨m⟩ − (γ̃1 + β)⟨m̃⟩,

d⟨n⟩
dt

= λ2⟨m⟩ − γ2⟨n⟩.

(4.2)

Setting time derivatives in (4.2) to zero, and solving the resulting algebraic system,
the stationary means are obtained as

⟨m⟩ = λ1
γeff1

, ⟨m̃⟩ = α

γ̃1 + β
⟨m⟩, ⟨n⟩ = λ2

γ2
⟨m⟩, (4.3)
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for the mRNA, inactive mRNA, and protein respectively, where

γeff1 = γ1 +
αγ̃1
γ̃1 + β

(4.4)

denotes the effective rate of mRNA decay. Owing to the linearity of reaction rates,
one can find a closed system of differential equations not only for means, but also for
higher-order moments [88, 89]; however these equations are typically less revealing
than the mean dynamics. Here we take a different approach and quantify the protein
noise as a by-product of a generating-function analysis in Section 4.4.

The probability pm,m̃,n(t) of having m mRNA, m̃ inactive mRNA, and n protein
molecules at time t satisfies the chemical master equation

dpm,m̃,n

dt
=λ1(pm−1,m̃,n − pm,m̃,n) + α((m+ 1)pm+1,m̃−1,n −mpm,m̃,n)

+ γ̃1((m̃+ 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)

+ γ2((n+ 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m+ 1)pm+1,m̃,n −mpm,m̃,n)

+ β((m̃+ 1)pm−1,m̃+1,n − m̃pm,m̃,n).

(4.5)

Equating the left-hand side of (4.5) to zero yields the steady-state master equation

0 =λ1(pm−1,m̃,n − pm,m̃,n) + α((m+ 1)pm+1,m̃−1,n −mpm,m̃,n)

+ γ̃1((m̃+ 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)

+ γ2((n+ 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m+ 1)pm+1,m̃,n −mpm,m̃,n)

+ β((m̃+ 1)pm−1,m̃+1,n − m̃pm,m̃,n).

(4.6)

We additionally require that the normalising condition∑
m,m̃,n

pm,m̃,n = 1 (4.7)

hold.
We aim to find the moments of the probability distribution pm,m̃,n by using the

generating function approach [14]. In order to solve (4.6)–(4.7), we employ the
probability generating function

G(x, y, z) =
∑
m,m̃,n

xmym̃znpm,m̃,n (4.8)

for the probability distribution pm,m̃,n. Multiplying (4.6) by the factor xmym̃zn and
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summing over m, m̃ and n yields

λ1(1− x)G =(λ2x(z − 1) + γ1(1− x) + α(y − x))
∂G

∂x

+ (γ̃1(1− y) + β(x− y))
∂G

∂y
+ γ2(1− z)

∂G

∂z
.

(4.9)

Equation (4.9) is subject to
G(1, 1, 1) = 1, (4.10)

which is implied by the normalisation condition (4.7).

4.3 Factorial cumulant generating function

In order to find a particular solution to (4.9)–(4.10), we change the variables
according to

x = 1 + u, y = 1 + v, z = 1 + w, G = exp(φ), (4.11)

and obtain that the factorial cumulant generating function [15] φ = φ(u, v, w) is a
solution of the inhomogeneous linear partial differential equation (PDE),

λ1u = (−λ2(1 + u)w + γ1u+ α(u− v))
∂φ

∂u
+ (γ̃1v + β(v − u))

∂φ

∂v
+ γ2w

∂φ

∂w
(4.12)

subject to
φ(0, 0, 0) = 0. (4.13)

In order to solve (4.12)–(4.13) we shall employ the ansatz

φ(u, v, w) = φ00(w) + uφ10(w) + vφ01(w). (4.14)

We immediately obtain the partial derivatives

∂φ

∂u
= φ10(w),

∂φ

∂v
= φ01(w),

∂φ

∂w
= φ′

00(w) + uφ′
10(w) + vφ′

01(w). (4.15)

Inserting (4.15) into (4.12) and rearranging the terms yields an inhomogeneous
system of ODEs

γ2wφ
′
00 − λ2wφ10 = 0,

γ2wφ
′
10 + (γ1 + α− λ2w)φ10 − βφ01 = λ1,

γ2wφ
′
01 + (γ̃1 + β)φ01 − αφ10 = 0.

(4.16)
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Let us assume that the functions φ00, φ10, and φ01 are of the power series form, i.e.,

φ00(w) =
∞∑
k=0

akw
k, φ10(w) =

∞∑
k=0

bkw
k, φ01(w) =

∞∑
k=0

ckw
k. (4.17)

The coefficients ak, bk, and ck give the factorial cumulants of the joint molecular
distribution [15]. Note that a0 = 0 follows immediately from the normalisation
condition (4.13). Evaluating the derivatives in (4.17) and substituting into (4.16),
we obtain the following recurrence equations:

ak =
λ2
kγ2

bk−1, k ≥ 1, (4.18)

(γ1 + α)b0 − βc0 − λ1+
∞∑
k=1

(γ2kbk + (γ1 + α)bk − λ2bk−1 − βck)w
k = 0, (4.19)

(γ̃1 + β)c0 − αb0+
∞∑
k=1

(γ2kck + (γ̃1 + β)ck − αbk)w
k = 0. (4.20)

Since we consider (4.17) as a solution to (4.12), all the coefficients in (4.19)–(4.20)
must be zero. Thus, we get

(γ1 + α + γ2k)bk − λ2bk−1 − βck = 0, (4.21)

(γ̃1 + β + γ2k)ck − αbk = 0, (4.22)

for bk and ck. Solving the algebraic system (4.21)–(4.22) in bk, k ≥ 1, yields

(γ22k
2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α)bk = λ2(γ̃1 + β + kγ2)bk−1,

i.e.
bk =

λ2(γ̃1 + β + kγ2)

γ22k
2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α

bk−1, (4.23)

where the zeroth term of the sequence bk is obtained, by equating the terms out of
the sums in (4.19) and (4.20) to zero, as

b0 =
λ1(γ̃1 + β)

(γ1 + α)(γ̃1 + β)− βα
=

λ1
γeff1

. (4.24)

Equation (4.24) thus rederives the stationary mRNA mean (4.3) by means of factorial
cumulant analysis; similarly, c0 and a1 can be identified as the stationary imRNA and
proteinmeans. Thus, the sequence bk can be calculated iteratively from (4.23) starting
from the initial condition (4.24). Having calculated bk, the sequence ak and ck can
be evaluated via (4.18) and (4.22). In Section 4.5, we will utilise these formulas to
obtain a special-function representation of the generating function. Before doing that,
we show that the first two terms of these sequences determine protein variability.
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4.4 Protein variability

As outlined in the previous section, the first-order cumulants b0, c0, and a1 (a0 = 0 by
normalisation condition), coincide with the stationary mRNA, imRNA, and protein
mean values. In this section, we use the second-order cumulants to describe the
stationary noise in our model. The noise in mRNA and imRNA is Poissonian (see
Section 4.6 for details) and therefore uninteresting: we focus on the protein noise.

Below, we express the Fano factor in terms of the first and second order cumulants,
which is independent of the specifics of the current model. We will use this formula
to analyse the noise reduction effect of the inactivation loop in Chapter 5 (cf. Section
5.3).

Expressing the Fano factor in terms of the cumulants. The generating function
is expanded by the Taylor formula as

G(1, 1, z) = G(1, 1, 1)+
∂G

∂z
(1, 1, 1)(z−1)+

1

2

∂2G

∂z2
(1, 1, 1)(z−1)2+O(z−1)3. (4.25)

Differentiating (4.8) with respect to z and setting (x, y, z) = (1, 1, 1) links the
derivatives of the generating function to the factorial moments:

∂G

∂z
(1, 1, 1) = ⟨n⟩, ∂2G

∂z2
(1, 1, 1) = ⟨n(n− 1)⟩. (4.26)

Inserting (4.10) and (4.26) into (4.25), we have

G(1, 1, z) = 1 + ⟨n⟩(z − 1) +
⟨n(n− 1)⟩

2
(z − 1)2 +O(z − 1)3. (4.27)

On the other hand, (4.11), (4.14), and (4.17) imply

G(1, 1, z) = exp
(
a1(z − 1) + a2(z − 1)2 +O(z − 1)3

)
=

(
1 + a1(z − 1) +

a21
2
(z − 1)2

)(
1 + a2(z − 1)2

)
+O(z − 1)3

= 1 + a1(z − 1) +

(
a2 +

a21
2

)
(z − 1)2 +O(z − 1)3.

(4.28)

Comparing (4.27) and (4.28) gives

⟨n⟩ = a1, ⟨n(n− 1)⟩ = 2a2 + a21.

The Fano factor,

F =
⟨n2⟩
⟨n⟩

− ⟨n⟩ = ⟨n(n− 1)⟩
⟨n⟩

+ 1− ⟨n⟩ = 2a2
a1

+ 1, (4.29)
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is thus expressed in terms of the first two factorial cumulants a1 and a2.
Substituting (4.18) and (4.23) into (4.29) and simplifying gives

F = 1 +
b1
b0

= 1 +
λ2

γ2 + γ1 +
α(γ2+γ̃1)
γ2+γ̃1+β

. (4.30)

Formula (4.30) provides the steady-state protein Fano factor as function of the
model parameters (degradation rate constants γ1, γ̃1, γ2 of active/inactive mRNA and
protein; inactivation/activation rate constants α, β; translation rate constant λ2).

In the next section, we go beyond themean and noise statistics (the first and second
order factorial cumulants), using the higher order cumulants to find a special-function
representation of the generating function of the joint distribution of mRNA, imRNA,
and protein copy numbers.

4.5 Special-function representation

Factorising the second-order polynomial in k in the denominator of (4.23) gives

bk = λ2
γ̃1 + β + kγ2

γ22(k + r1)(k + r2)
bk−1 for k ≥ 1, (4.31)

where
r1,2 =

γ1 + α + γ̃1 + β ±
√

(γ̃1 + β − γ1 − α)2 + 4βα

2γ2
.

Note that the sequence bk in (4.31) can be rewritten as

bk = b0
(1 + τ)k

(1 + r1)k(1 + r2)k

(
λ2
γ2

)k

, k ≥ 1, (4.32)

where we set τ = (γ̃1 + β)/γ2 for the sake of simplicity and the polynomial

(x)k = x(x+ 1)(x+ 2) . . . (x+ k − 1), (x)0 = 1

represents the rising factorial, also called the Pochammer symbol.
We next find the remaining sequences ak and ck. Inserting (4.32) into (4.18) gives

ak =
b0r1r2
τ

(τ)k
k(r1)k(r2)k

(
λ2
γ2

)k

, k ≥ 1. (4.33)

Similarly, substituting (4.32) into (4.22) yields

ck =
αb0

γ̃1 + β

(τ)k
(1 + r1)k(1 + r2)k

(
λ2
γ2

)k

, k ≥ 1, (4.34)
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where c0 = αb0
γ̃1+β

, which can be obtained by combining (4.20) and (4.24).
Having found the sequences in (4.17), we next return to the original variables in

(4.11) to obtain the generating function of the stationary distribution of active mRNA,
inactive mRNA, and protein amounts, which is given by

G(x, y, z)

= exp

(∑
k≥1

ak(z − 1)k + (x− 1)
∑
k≥0

bk(z − 1)k + (y − 1)
∑
k≥0

ck(z − 1)k

)
.

(4.35)

Equation (4.35) can be rewritten as

G(x, y, z) = exp

(
b0λ2
γ2

∫ z

1
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)
ds

+b0(x− 1)2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(z − 1)

)
+

αb0
γ̃1 + β

(y − 1)2F2

(
1, τ

1 + r1, 1 + r2
;
λ2
γ2

(z − 1)

)) (4.36)

in terms of the generalised hypergeometric functions defined by [23]

pFq

(
a1, . . . , ap
b1, . . . , bq

; z̃

)
=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

z̃n

n!
. (4.37)

Equation (4.36) provides the sought-after special function representation of the joint
generating function. In the following section, we focus on specific one-dimensional
sections of the joint generating function that give the generating functions of the three
marginal distributions.

4.6 Marginal distributions

In this section, we use the analytic formula (4.36) for the generating function to
determine the marginal active and inactive mRNA, and protein distributions. To do
so, we first set y = z = 1 in (4.36) and obtain

G(x) = G(x, 1, 1) = exp(b0(x− 1))

for the marginal active mRNA distribution. Similarly, setting x = z = 1 in (4.36)
yields the marginal inactive mRNA distribution

G(y) = G(1, y, 1) = exp

(
αb0

γ̃1 + β
(y − 1)

)
.
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Finally, we set x = y = 1 in (4.36) and get the marginal protein generating function
G(z) as

G(z) = G(1, 1, z) = exp(ψ(z)),

where ψ is given by

ψ(z) =
b0λ2
γ2

∫ z

1
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)
ds. (4.38)

In order to obtain the marginal protein distribution, we exploit its generating function

p·,·,n =
Dn(G(z))

n!

∣∣∣∣
z=0

, (4.39)

where D stands for the differential operator d/dz and p·,·,z gives the probability of
having z protein molecules and any number of active and inactive amount of mRNA.
The first derivative of the composite function G(z) in (4.39) is obtained by chain rule
as

dG(z)

dz
= G(z)

dψ(z)

dz
. (4.40)

For the n-th derivative, we evaluate the (n−1)th derivative of (4.40) according to the
Leibniz rule, thus we have

Dn(G(z)) =
n−1∑
i=0

(
n− 1

i

)
Di(G(z))Dn−i(ψ(z)). (4.41)

Next, we determine the rth–r is an arbitrary positive integer–derivative of the function
ψ(z), which is given by

Dr(ψ(z)) = b0

(
λ2
γ2

)r
(r − 1)!(1 + τ)r−1

(1 + r1)r−1(1 + r2)r−1
2F2

(
r, τ + r

r1 + r, r2 + r
;
λ2
γ2

(z − 1)

)
, (4.42)

in which we used the formula

ds

dz̃s
pFq

(
a1, . . . , ap
b1, . . . , bq

; z̃

)
=

∏p
i=1(ai)s∏q
j=1(bj)s

pFq

(
a1 + s, . . . , ap + s

b1 + s, . . . , bq + s
; z̃

)
for the s-th derivative of the generalised hypergeometric function pFq. Inserting the
derivatives in (4.42) into (4.41), taking z = 0, and rearranging the resulting equation
according to (4.39) gives the formula for the marginal protein probabilities

p·,·,n =
b0λ2
nγ2

n−1∑
i=0

(
λ2
γ2

)n−i−1
(1 + τ)n−i−1

(1 + r1)n−i−1(1 + r2)n−i−1

× 2F2

(
n− i, τ + n− i

n− i+ r1, n− i+ r2
;−λ2

γ2

)
p·,·,i,

(4.43)
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Figure 4.1: Left: Comparison of the probability mass function (4.43) of the marginal
protein distribution and the probability calculated by Gillespie’s stochastic simulation
algorithm (the solid line). Right: A logarithmic scale plot of the probability, out of 105

repeats, obtained by the two approaches. Parameter values: The kinetic parameters
are: λ1 = 5, α = γ1 = β = γ̃1 = γ2 = 1, λ2 = 5.

where the first term of the series is given by

p·,·,0 = G(0) = exp

(
−b0λ2

γ2

∫ 1

0
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)
ds

)
. (4.44)

In order to calculate and compare the marginal protein probabilities (4.43) with
those obtained by stochastic simulations based on Gillespie’s algorithm, we
implement the recursive formula (4.43) in a high-level programming language,
Python, together with using its numerical computing library NumPy and plotting
library Matplotlib. The probabilities in (4.43) are calculated iteratively starting from
its first term given by (4.44) up to n = 50. In Figure 4.1, the right panel compares
the theoretical probability distribution (4.43) (blue bars) with the one obtained
using stochastic simulations (solid line) at the timepoint t = 100, while the left panel
shows the same comparison but on a logarithmic scale. The number of Gillespie
iterations was set to 105 in the Python package GillesPy2 [18]. The initial number of
active and inactive mRNA and protein was set to 5. A Python routine mpmath.hyp2f2
used to calculate the generalised hypergeometric function 2F2 in (4.43)–(4.44).
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4.7 Conclusion

In this chapter, we analysed a formulation of the two-stage model for gene expression
that extends the classical version [22, 40] by anmRNA inactivation loop. The principal
results of our analysis are the characterisation of themean and noise behaviour, as well
as the underlying probability distribution. The principal tool is the factorial cumulant
generating function and the factorial cumulant expansion.

We have provided a comprehensive classification of the underlying probability
distributions. Unsurprisingly, the distributions of the active and inactive mRNA are
Poissonian. On the other hand, the protein distribution is highly non-trivial, and is
characterised in terms of the generalised hypergeometric series. The
characterisation is used to derive a recursive expression for the protein probability
mass function. The recursive formula is found to be consistent with kinetic
Monte-Carlo simulation (by means of the Gillespie direct method).

In summary, this chapter provides a systematic mathematical analysis of an
mRNA–protein model for gene expression extended by an inactive mRNA species,
and hints at possible functional roles of mRNA inactivation loop in the control of low
copy number gene-expression noise.

In the next chapter, we shall employ the extended model and analyse the protein
noise in the model. To do so, we utilise the two popular metrics: the Fano factor and
the squared coefficient of variation. We cross-validate our theoretical results with the
data from a recent experimental study.
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Chapter5
Effects of stem–loops on protein noise

This chapter concerns the application of gene-expression models. Specifically, we
characterise noise in the basic two-stage model in terms of two noise metrics, the
Fano factor and the squared coefficient of variation. Next, we compare protein noise
in the basic two-stage model and the extended model. The main example pertains to
the formation of stem loops; here, we reinterpret previous data and provide
additional insights, summarising some of the key results of our mathematical
analysis.

The content of this chapter will be published in BMC Bioinformatics.

5.1 Introduction

The motivation for our mathematical analysis stems from a recent experimental
study [81] on the influence of RNA stem loops on gene expression noise. Stem loops
appear when two palindromic sequences on the chain of nucleic acids align and form
hydrogen bonds. The aligned palindromic sequences then form the “stem” and the
nucleic acids in between form the “loop” of a stem loop. Another term is “hairpin
loop” because of resemblance.

The authors of [81] have constructed several variants of a gene encoding for a
fluorescent reporter protein. Although the constructs encode for the same reporter
protein, they differ in palindromic sequences in the untranslated region at the 5’ end
of the gene (5’UTR). The formation of a stem–loop interferes with translation; the
higher the stability of a stem–loop, the greater the interference; the lower the mean.
The authors also show that this is associated with an increase in the coefficient of
variation.
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5.2 Application of two-stage model

Previous theoretical studies indicate that different noise metrics can lead to different
interpretations of the effects of a particular mechanism on gene expression noise. The
most common are the squared coefficient of variation and the Fano factor defined by

CV2 =
⟨P 2⟩ − ⟨P ⟩2

⟨P ⟩2
, F =

⟨P 2⟩ − ⟨P ⟩2

⟨P ⟩
,

where P stands for the reporter protein and ⟨.⟩ are the averaging brackets. In Figure
5.1, in addition to showing the dependence of the CV2 on mean (thus reproducing
Figure 6 of [81]), we also show the dependence of F = ⟨P ⟩CV2 on the mean. Notably,
decreasing the mean (which is associated with greater stem loop stability) decreases
the Fano factor.

In order to explain the apparently contradictory interpretations, we fit the basic
two-stage (transcription-translation) model of gene expression [40, 82]. The model
is described in full mathematical detail in Section 2.8. For the purposes of the current
section, we mention that it predicts that the stationary protein mean and Fano factor
of the form

⟨P ⟩ = λ1λ2
γ1γ2

, F = 1 +
λ2

γ1 + γ2
,

where λ1 is the mRNA production rate, λ2 is the protein translation rate, γ1 and γ2 are
the decay rate constants of mRNA and protein species, respectively. Provided that the
protein is more stable than the mRNA (γ2 ≪ γ1), we can simplify to

F = 1 +
λ2
γ1

= 1 +
γ2⟨P ⟩
λ1

, CV2 =
F

⟨P ⟩
=

1

⟨P ⟩
+
γ2
λ1
. (5.1)

Stem loops do not affect the transcription rate λ1 or the protein stability γ2, but they
can affect the proteinmean through translation rate λ2 andmRNA decay rate γ1. Thus,
the two-stage model predicts an increasing linear dependence of the Fano factor, and
a decreasing hyperbolic dependence of the CV2, on the mean. In Figure 5.1, the Fano
factor data are fit by a straight line using simple linear regression. The regression
coefficients are reused for the hyperbolic dependence of the CV2. The fits seem to be
satisfactory, leading us to attribute the changes in the noise to the decrease of mean
rather than an active control of noise by the stem–loop mechanism.
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Figure 5.1: Dependence of protein noise on protein mean for different 5’UTR
constructs. The yEGFP reporter (bottom) and the ymNeonGreen reporter (top)
constructs are treated separately. The use of a log-log scale is adopted from [81]. The
dots give the experimental values taken from [81] (see Table 5.1). Each dot is a result
of multiple experiments, and the error bars indicate the standard deviation. These
were obtained from the standard deviation of the (nonsquared) coefficient of variation
by Taylor formula: SDCV 2 = 2CV SDCV , SDF = ⟨P ⟩SDCV 2. The dashed lines give the
linear and hyperbolic dependence of the F and CV 2, respectively, which are predicted
by the two-stage gene expression model (cf. (5.1)). The protein translation rate λ2
and the mRNA decay rate γ1 are being varied to change the mean levels. Note that
the use of the log-log scale results in a slight curvature of the line (with a nonzero
intercept).
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5.3 Noise control by stem–loop

Let us address the question of noise control by stem–loop formation theoretically.
For reasons of mathematical elegance, we will introduce in Section 6.2 and analyse
in Sections 6.3–6.4 a general model that extends the basic two-stage by multiple
transcript states. Here we discuss the special case with two states, one of them
translationally active (without a stem–loop), the other translationally inactive (with
a stem–loop). This special case was analysed in Chapter 4. Using standard methods,
we derived that the mean is given by

⟨P ⟩ = λ2λ1
γ2γeff1

,

where
γeff1 = γ1 +

αγ̃1
γ̃1 + β

(5.2)

gives an effective mRNA decay rate constant. The Fano factor satisfies

F = 1 +
λ2

γ2 + γ1 +
α(γ2+γ̃1)
γ2+γ̃1+β

.

The above equations give the steady-state protein mean and Fano factor as function of
the model parameters (degradation rate constants γ1, γ̃1, γ2 of active/inactive mRNA
and protein; inactivation/activation rate constants α, β; translation rate constant λ2).
The formula for themean implies, in particular, thatmaking the stem–loopmore stable
(i.e. decreasing β) decreases the mean. The noise requires a more subtle analysis,
which is given below.

In order to compare the protein noise in the current model to that exhibited by
the classical two-stage model (without the inactivation–activation loop) we define the
baseline Fano factor as

F0 = 1 +
λ2

γ2 + γeff1
= 1 +

λ2

γ2 + γ1 +
αγ̃1
γ̃1+β

, (5.3)

which can be obtained from (4.30) by first setting α = 0 (no inactivation) and then
replacing the mRNA decay rate γ1 by its effective value (5.2). Adjusting the mRNA
decay rate maintains the same species means in the baseline model like in the full
model extended by the inactivation loop. Note that a comparison in protein variance
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Figure 5.2: Fractional protein noise reduction by the mRNA inactivation loop as
function of protein stability. The ordinate gives the protein noise (the squared
coefficient of variation) in the two-stage model extended by the mRNA inactivation
loop relative to the protein noise in a baseline two-stage model without the mRNA
inactivation loop (adjusting the mRNA decay rate to obtain the same species means).
The protein mean is set to ⟨n⟩ = 500; the mRNA mean is ⟨m⟩ = 10; the imRNA decay
rate is either the same as that of active mRNA (γ̃1 = γ1; dashed line) or set to zero
(γ̃1 = 0; solid line). The inactivation and activation rates are α = 3, β = 3 (left panel)
or α = 1, β = 0.1 (right panel); we thereby set γ1 = 1 without loss of generality.
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yEGFP ymNeonGreen

Construct µ CV (%) µ CV (%)

L0 (PTEF1) 1560 11.8 ± 0.5 3050 12.2 ± 0.3
U 526 12.4 ± 0.6 - -

M1Ug 408 13.1 ± 0.6 - -
M3g 226 16.0 ± 0.4 - -
G10 448 12.9 ± 0.5 - -
G14 - - 317 15.4 ± 1.5

M3Wn - - 1143 13.1 ± 0.8
M3n - - 579 13.3 ± 0.5
M3Un - - 377 13.9 ± 0.6

L0 (PPAB1) 288 13.8 ± 0.2 495 13.7 ± 0.4

Table 5.1: Protein mean and noise (CV) values for the yEGFP and the ymNeonGreen
reporters obtained from [81]. The hyphen symbol denotes undetermined values.

between the extended and canonical two-stage model can also be done by the mRNA
autocovariance function [90].

The protein variability formulae (4.30) and (5.3) can equivalently be expressed in
terms of the squared coefficient of variation [91, 92] CV2 = F/⟨n⟩ and CV2

0 = F0/⟨n⟩.
Combining (4.3) and (4.30)–(5.3), we find

CV2 =
1

⟨n⟩
+

1

⟨m⟩
γ2

γ2 + γ1 +
α(γ2+γ̃1)
γ2+γ̃1+β

, (5.4)

CV2
0 =

1

⟨n⟩
+

1

⟨m⟩
γ2

γ2 + γ1 +
αγ̃1
γ̃1+β

(5.5)

for the protein coefficient of variation and its baseline value (no activation loop).
Comparing (5.4) to (5.5), we see that CV2 < CV2

0, allowing us to conclude that
the inclusion of the mRNA inactivation loop decreases protein noise. However, the two
coefficients will be very close in many parameter regimes; the necessary conditions
for observing a significant difference are given by

γ̃1 ≲ min{β, γ2}, max{γ1, γ2} ≲ α, (5.6)

where by “≲” we mean smaller than or of similar magnitude. Thus, in order to obtain
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significant reduction of noise, we require that an individual active mRNA molecule be
more likely to be inactivated than degraded, and that an individual inactive mRNA
molecule be more likely to be activated than degraded. Additionally, we require that
inactive mRNA be more stable than protein (which is possible if inactivation protects
the mRNA from decay).

One particular consequence of the necessary conditions (5.6) is that the fraction
protein noise reduction, CV2/CV2

0, is a non-monotonous function of protein stability:
it tends to one for highly unstable or highly stable proteins, and is less than one for
proteins of optimal stability (cf. Figure 5.2). The optimal value of protein stability
critically depends on the rate constant β of mRNA activation. In case of fast mRNA
activation, the optimum noise reduction is achieved by unstable proteins (less stable
than mRNA; Figure 5.2, left panel. In case of slow mRNA activation, the optimum
can be achieved by stable proteins (Figure 5.2, right panel). However, slow activation
(β ≪ 1) imposes, via (5.6), a stringent condition on the stability of inactivated mRNA.
Indeed, the right panel of Figure 5.2 demonstrates that there is hardly any reduction
of noise if the inactive mRNA is unstable.

5.4 Conclusion

In this chapter, we focused on the applications of gene expression models, which we
introduced in the previous chapters. Our motivation for studying these models was the
influence of stem loops on gene expression noise. In particular, we comprehensively
studied the characterisation of protein noise in the basic two-stage and the extended
model.

We first presented the two noise metrics for the basic two-stage model: the Fano
factor and the squared coefficient of variation. Our theoretical results were fitted to
data from an experimental study, providing an illustrative comparison that allows us
to conclude that the changes in noise are due to the decrease in mean rather than an
active control of noise by the stem–loop mechanism.

Next, we considered the inactivation loop model, showing that the incorporation
of the mRNA inactivation loop into the classical two-stage model for gene expression
reduces the protein noise. However, in order for the reduction be substantial, several
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restrictions on the parameter rates have to be in place. In particular, the protein
cannot be too stable or unstable, but its stability has to be optimally chosen. The
resulting optimal value of protein stability is typically unrealistically low (lower than
mRNA stability, in particular). In order to obtain an optimal stability that is greater
than mRNA stability, one has to assume that inactivation protects the mRNA from
degradation and activation is slow. Thus, our noise analysis points towards a potential
role of the mRNA inactivation loop in gene expression noise control; at the same time,
it delineates the limits of its application.

Overall, this chapter provides a comprehensive noise analysis of two different
gene-expression mechanisms by which the noise in relevant biological scenarios can
be controlled.
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Chapter6
The generalised model

In this chapter, we study a structuration/generalisation of a stochastic
gene-expression model in which mRNA molecules can be found in one of its finite
number of different states and can transition among these states. We give the
complete mathematical description of the model in Section 6.2. Next, we
characterise and derive non-trivial analytical expressions for the steady-state protein
distribution in Section 6.3. Furthermore, we obtain the marginal mRNA and protein
distributions and provide the protein Fano factor. In particular, we show that two
different gene-expression models, the extended model and the model with
multiphasic mRNA lifetime, can be obtained from the structured/generalised model.

The content of this chapter will be published in BMC Bioinformatics.

6.1 Introduction

As a generalisation of the (classical) two-stage model, some studies in the literature
consider a set of multiple gene states and investigate the dynamics of stochastic
transitions among these states [85, 86]. In Chapter 4 we studied an extension of the
classical model with two distinct mRNA states. Here, we study a structuration/
generalisation of the classical two-stage gene-expression model, which takes into
account multiple mRNA states. More specifically, after being transcribed, mRNA
molecules are considered to be transitioning among their different states at constant
reaction rates. Subsequently, the nascent mRNA molecule is translated, and protein
is degraded. The schematic of the reactions describing this system is given (6.1). In
what follows, we formulate the structured model in terms of the Chemical Master
Equation (CME), and by solving it, we obtain quantitative insights into the
characteristics of the copy number distributions. Additionally, we present two
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specific examples which can be obtained from the structured/generalised model: the
mRNA inactivation loop model and the multiphasic mRNA model. We complement
our analysis by performing stochastic simulations that validate our theoretical
results.

This chapter is structured as follows. In Section 6.2, a brief review of the basic
two-stage gene-expression model is given in deterministic and stochastic settings;
the associated CME to this model, which is then transformed into a partial
differential equation (PDE) for the generating function, is formulated; the core of
this chapter, in which a generalisation of the two-stage model and its corresponding
CME and PDE are given, is introduced. In Section 6.3, a power series solution to the
PDE is found. In Section 6.4, the marginal mRNA and protein distributions are
obtained using the analytical formula for the generation function; moments of the
protein distributions are determined utilising the factorial cumulants, thereby the
protein distribution is recovered. In Section 6.5, an example of the generalised
model, explaining how the model is reduced to the one in which only two mRNA
states (namely active and inactive) are considered, is given. In Section 6.6, a
particular case of the generalised model which takes multiphasic mRNA lifetime into
account is provided. The chapter is concluded in Section 6.7.

6.2 Model formulation

A generalisation of the basic two-stage model (2.86) is given by the following set of
reactions:

∅
λm
i−→ mRNAi

γm
i−→ ∅, i = 1, . . . , K,

mRNAi
qij−→ mRNAj, i, j = 1, . . . , K, i ̸= j,

mRNAi

λp
i−→ mRNAi + protein, i = 1, . . . , K,

protein
γp

−→ ∅,

(6.1)

where λmi and γmi are the production and decay rates for an mRNA molecule in i-th
state, respectively. The term qij, i ̸= j, denotes the mRNA transition rate from state i
to state j, λpi is the protein translation rate, and γp is the protein decay rate. In (6.1),
the reactions correspond to mRNA transcription and decay, transitions among these
mRNA molecules, protein translation, and protein decay, respectively. Throughout
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this chapter, we refer the model described by (6.1) to as the generalised two-stage

model, by which we mean that the model is considered as an extension of the classical
two-stage model by structuration of mRNA.

For the generalised model (6.1), the probability P (m, n, t) of observingm1 mRNA
copies in state 1, m2 mRNA copies in state 2, and so on, at given time t satisfies the
following CME,

dP (m, n, t)

dt
=

K∑
i=1

(
λmi (E−1

i − 1)P + γmi (Ei − 1)miP +
K∑
j=1

qij(EiE−1
j − 1)

×miP + λpi (E
−1
K+1 − 1)miP

)
+ γp(EK+1 − 1)nP,

(6.2)

where m =
[
m1 m2 m3 . . . mK

]
. Note that the step operator [10] Ei in (6.2) is

in the variable mi, whereas EK+1 in the variable n; EiE−1
j − 1 = 0 for i = j.

The multivariate probability generating function is given by

G(x, y, t) =
∑
m1

· · ·
∑
mK

∑
n

P (m, n, t)xm1
1 xm2

2 · · ·xmK
K yn, (6.3)

where x =
[
x1 x2 x3 . . . xK

]
. Multiplying (6.2) by xm1

1 xm2
2 . . . xmK

K yn and
summing over all m1,m2, . . . ,mK , n, we arrive at the PDE

∂G(x, y, t)

∂t
=

K∑
i=1

(
λmi (xi − 1)G+ γmi (1− xi)

∂G

∂xi
+

K∑
j=1

qij(xj − xi)
∂G

∂xi

+ λpi (y − 1)xi
∂G

∂xi

)
+ γp(1− y)

∂G

∂y
.

(6.4)

Note that the step operators E±1
i in (6.2) coincide with the variables x∓1

i while the
number of species mi correspond to the terms xi∂xi

in (6.4) for the generating
function. In the next section, we will seek a solution to the PDE (6.4).

6.3 Solution

In this section, we shall provide a step-by-step breakdown of our solution method for
solving the PDE (6.4). We are interested in the steady state; therefore, we set the time

66



Solution The generalised model

derivative in (6.4) to zero and rearrange the resulting equation to obtain
K∑
i=1

(
λmi (xi − 1)G+

(
γmi (1− xi) +

K∑
j=1

qij(xj − xi) + λpi (y − 1)xi

)
∂G

∂xi

)

+ γp(1− y)
∂G

∂y
= 0

(6.5)

for the time-independent generating function G(x, y) of the stationary distribution.
The probability normalisation condition translates to G(1, . . . , 1) = 1. Changing the
variables according to

xi = 1 + ui, y = 1 + v, G = exp(φ) (6.6)

allows us to transform (6.5) into
K∑
i=1

(
λmi ui +

(
λpi v(1 + ui)− γmi ui +

K∑
j=1

qij(uj − ui)

)
∂φ

∂ui

)
= γpv

∂φ

∂v
, (6.7)

which is subject to the normalisation condition

φ(0) = 0. (6.8)

Below, we focus on seeking a solution to (6.7)–(6.8) using a suitable ansatz.
Let us first consider that the solution is of the form

φ(u1, u2, u3, . . . , uK , v) = φ0(v) + u1φ1(v) + . . .+ uKφK(v). (6.9)

With this in mind, we obtain from (6.9) that
∂φ

∂ui
= φi(v),

∂φ

∂v
= φ′

0(v) + u1φ
′
1(v) + . . .+ uKφ

′
K(v). (6.10)

Inserting the partial derivatives (6.10) into (6.7), we get
K∑
i=1

(
λmi ui +

(
λpi v(1 + ui)− γmi ui +

K∑
j=1

qij(uj − ui)

)
φi − γpvuiφ

′
i

)

= γpvφ′
0.

(6.11)

Equation (6.11) can be rewritten as(
γpφ′

0 −
K∑
i=1

λpiφi

)
v

+
K∑
i=1

(
γpvφ′

i +

(
γmi − λpi v +

K∑
j=1

qij

)
φi −

K∑
j=1

qjiφj − λmi

)
ui = 0.

(6.12)
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In order that (6.12) hold, we must necessarily have
K∑
i=1

λpiφi − γpφ′
0 = 0, (6.13)

γpvφ′
i +

(
γmi − λpi v +

K∑
j=1

qij

)
φi −

K∑
j=1

qjiφj = λmi . (6.14)

Next, we solve the system of ODEs (6.13)–(6.14) using the power series method.
Let us assume that the functions φ0 and φi are of the power series form, i.e.,

φ0(v) =
∞∑
n=0

anv
n, φi(v) =

∞∑
n=0

b(i)n v
n (6.15)

for i ∈ {1, . . . , K}. Differentiating (6.15) term by term we get

φ′
0(v) =

∞∑
n=1

nanv
n−1, φ′

i(v) =
∞∑
n=1

nb(i)n v
n−1. (6.16)

Inserting (6.15) and (6.16) into (6.14), and collecting same powers of v, we obtain
the following system of recurrence relations(

γmi +
K∑
j=1

qij + nγp

)
b(i)n −

K∑
j=1

qjib
(j)
n = λpi b

(i)
n−1 (6.17)

for b(i)n , i = 1, . . . , K. Equations (6.17) can be rewritten in matrix form as

(A−Q⊤ + nγpI)Xn = BXn−1, n ≥ 1, (6.18)

where I is the identity matrix and the vector Xn is defined as

Xn =
[
b
(1)
n , b

(2)
n , b

(3)
n , . . . , b

(K)
n

]⊤
. (6.19)

In (6.18), A is a K ×K matrix defined by

Aij :=


γmi for i = j,

0 for i ̸= j,

(6.20)

Q is a K ×K matrix defined by

Qij :=


−
∑
k ̸=i

qik for i = j,

qij for i ̸= j,

(6.21)
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and B is a K ×K matrix defined by

Bij :=


λpi for i = j,

0 for i ̸= j.

(6.22)

In order to solve the recurrence relations (6.18) initial conditions are needed. These
can be obtained from (6.14) by setting v = 0 for each i ∈ {1, 2, . . . , K}. The resulting
system of linear equations is given in matrix form as

(A−Q⊤)X0 = C, (6.23)

where C is a column vector defined as C =
[
λm1 λm2 . . . λmK

]⊤
.

Solving the system of algebraic equations (6.18) under the initial conditions (6.23)
yields the terms of b(i)n ; the sequence an can be obtained by substituting (6.15) and
(6.16) into (6.13) and collecting same powers of v. By doing so, we get

an =
1

nγp

K∑
i=1

λpi b
(i)
n−1, n ≥ 1. (6.24)

Here the normalisation condition (6.8) implies that a0 = φ0(0) = φ(0) = 0. Having
found the sequences an and b(i)n , we combine (6.9) and (6.15) to obtain

φ(u, v) =
∞∑
n=1

anu
n +

K∑
i=1

vi

∞∑
n=0

b(i)n u
n. (6.25)

We return to the original variables in (6.25) via (6.6) to obtain the generating function
of the stationary distribution of mRNA and protein amounts, which is given by

G(x, y) = exp

(
∞∑
n=1

an(y − 1)n +
K∑
i=1

(xi − 1)
∞∑
n=0

b(i)n (y − 1)n

)
. (6.26)

Equation (6.26) provides the sought-after steady-state solution to the PDE (6.4) and
will be used in the following section.

6.4 Marginal distributions and moments

In this section, we use the analytical formula for the generating function (6.26) to
obtain marginal mRNA distributions. Subsequently, we determine the moments of
the protein distribution by way of the factorial cumulants, allowing us to recover the
protein distribution. Additionally, we derive the protein Fano factor (variance-to-mean
ratio) and express it in terms of the first two factorial moments.
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Marginal mRNA distributions. In the generating function (6.26), if we take y = 1,
then we get the marginal mRNA distributions as

Gm(x) = G(x, 1) = exp

(
K∑
i=1

b
(i)
0 (xi − 1)

)
=

K∏
i=1

exp
(
b
(i)
0 (xi − 1)

)
, (6.27)

from which we conclude that the steady state mRNA distributions are independent
Poissons with means

⟨mi⟩ = b
(i)
0 . (6.28)

Marginal protein distribution. We can recover the generating function of the
marginal protein distribution, by inserting xi = 1, i = 1, . . . , K, into (6.26), as

G(y) = G(1, y) = exp

(
∞∑
n=1

an(y − 1)n

)
, (6.29)

where 1 is a K-dimensional row vector of ones.
Next, we determine the moments of the protein distributions. The factorial

(combinatorial) moments hn are obtained by expanding the generating function into
a power series around y = 1:

G(y) =
∞∑
n=0

hn(y − 1)n. (6.30)

We aim to calculate the factorial moments hn by way of the factorial cumulants an.
To that end, we first differentiate (6.29) to obtain

DG(y) = G(y)D lnG(y), (6.31)

where D denotes the differential operator d/dy. Then, taking the (n− 1)th derivative
of (6.31), we get

DnG(y) =
n−1∑
i=0

(
n− 1

i

)
DiG(y)Dn−i lnG(y), (6.32)

which can be recast as
DnG(y)

n!
=

n−1∑
i=0

(
1− i

n

)
DiG(y)

i!

Dn−i(lnG(y))

(n− i)!
. (6.33)

Evaluating (6.33) at y = 1 gives the factorial moments of the protein distribution

hn =
n−1∑
i=0

(
1− i

n

)
an−ihi, for n ≥ 1, (6.34)
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where h0 = 1. The terms of hn can be recursively obtained by inserting (6.24) into
(6.34). Subsequently, we recover the protein distribution exploiting the recurrence
method [93] given by

p(n) =
∞∑
j=1

(j + 1)n
n!

hn+j(−1)j, (6.35)

where (x)n, n being a nonnegative integer, denotes the rising factorial or namely
Pochhammer symbol.

Moments. The mRNA distributions in (6.27) are Poissonian. Therefore, mRNA Fano
factor is equal to 1. The proteinmean and Fano factor can be derived from the factorial
moments (6.34). The first two factorial moments are given by

⟨n⟩ = h1 = a1 and ⟨n(n− 1)⟩ = 2h2 = 2a2 + a21, (6.36)

respectively. The Fano factor,

F =
⟨n2⟩
⟨n⟩

− ⟨n⟩ = ⟨n(n− 1)⟩
⟨n⟩

+ 1− ⟨n⟩ = 2a2
a1

+ 1, (6.37)

is thus expressed in terms of the first two factorial cumulants a1 and a2.

6.5 The mRNA inactivation loop model

In this section, we reconsider the mRNA inactivation loop model, which we previously
studied in detail in Chapter 4. Here, we present how the structured/generalisedmodel
can be used to encapsulate this model. In particular, we rederive the (full) high-order
cumulants for the extended model using the generalised model.

As mentioned, the inactivation loop model can be readily obtained from the
generalised model (6.1) by taking K = 2, which accounts for only two mRNA states
denoting the active mRNA state m1 and the inactive mRNA state m2. In what
follows, we assume that a newly produced mRNA is active, i.e. that the transcription
rate satisfies

λmi = λmδi,1, for i = 1, 2. (6.38)

Additionally, we assume that proteins are translated only from an active mRNA, so
that we have

λpi = λpδi,1, for i = 1, 2, (6.39)

for the translation rate. Here, δi,j denotes the Kronecker delta symbol.
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Cumulants. We aim to recover expressions for the inactivation loop model from
the generalised model. The system of algebraic equations for this model follow from
(6.23), taking the form of

(γm1 + q12)b
(1)
0 − q21b

(2)
0 = λm, (6.40)

(γm2 + q21)b
(2)
0 − q12b

(1)
0 = 0, (6.41)

from which we recover

b
(1)
0 =

λm(γm2 + q21)

(γm1 + q12)(γm2 + q21)− q12q21
. (6.42)

Combining (6.42) with (6.29) we find

⟨m1⟩ =
λm

γmeff
, (6.43)

where
γmeff = γm1 +

q12γ
m
2

γm2 + q21
(6.44)

is the effective rate of mRNA decay. The recurrence relations (6.18) read

(γm1 + q12 + nγp)b(1)n − λpb
(1)
n−1 − q21b

(2)
n = 0, (6.45)

(γm2 + q21 + nγp)b(2)n − q12b
(1)
n = 0, (6.46)

for n ≥ 1. Solving the algebraic system (6.45)–(6.46) in b(1)n yields

b(1)n =
λp(γm2 + q21 + nγp)

γp2n2 + γp(γm2 + γm1 + q21 + q12)n+ γm2 γ
m
1 + γm1 q21 + γm2 q12

b
(1)
n−1, (6.47)

which is a recursive expression whose first term (i.e. zeroth) is given by (6.42). The
sequence an can be obtained from (6.24) as

an =
λp

nγp
b
(1)
n−1, n ≥ 1. (6.48)

Note that equations (6.47) and (6.48) rederive their one-dimensional counterparts
(4.18) and (4.23) given in Chapter 4 (cf. Section 4.3).

6.6 Multiphasic mRNA lifetime

In this section, we consider that mRNAmolecules possesK > 2 stages of their lifetime,
where the transition rates correspond to the ageing of an mRNA molecule. We can
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represent this process, which we refer to hereafter as the multiphasic model, by the
following reaction scheme

∅ λm

−→ mRNA1

Kγm
eff−−−→ mRNA2

Kγm
eff−−−→ · · ·

Kγm
eff−−−→ mRNAK

Kγm
eff−−−→ ∅,

mRNAi
λp

−→ mRNAi + protein, i = 1, . . . , K,

protein
γp

−→ ∅.

(6.49)

By (6.49), there are K stages of an mRNA’s molecule lifetime, each of which lasts
1/Kγmeff on average. The total mRNA lifetime is then 1/γmeff; γmeff is thereby interpreted
as the effective mRNA decay rate.

The multiphasic model (6.49) is obtained by making the following choices in the
general model statement (6.1):

λmi =


λm for i = 1,

0 for i ̸= 1,

(6.50)

and

γmi =


Kγmeff if i = K,

0 otherwise.
(6.51)

The transition matrix Q (6.21) for the multiphasic model takes the form of

Q = Kγmeff



−1 1

−1 1

. . . . . .

−1 1

0


, (6.52)

and the matrix A (6.20) is given by

A = Kγmeff



0

0

. . .

0

1


. (6.53)
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Inserting (6.53) and (6.52) into (6.23), we obtain the system of recurrence equations

Kγmeff



1

−1 1

−1
. . .
. . . 1

−1 1





b
(1)
0

b
(2)
0

...
b
(i)
0

...
b
(K)
0


=



λm

0
...
0
...
0


, (6.54)

from which, upon taking the i-th row of (6.54) and solving the recursive equations

−Kγmeffb
(i−1)
0 +Kγmeffb

(i)
0 = 0, for 2 ≤ i ≤ K, (6.55)

where b(1)0 = λm/Kγmeff , we recover

b
(i)
0 =

λm

Kγmeff
. (6.56)

Formula (6.56) gives the mean of mRNA molecule in the i-th state of its lifetime. Note
that the matrix B (6.22) takes the form of B = λpI, where I is the identity matrix.

Having found the first moments (i.e. means) (6.56), we then determine the second
moments. Taking n = 1 in (6.18), we have

Kγmeff + γp

−Kγmeff Kγmeff + γp

−Kγmeff
. . .
. . . Kγmeff + γp

−Kγmeff Kγmeff + γp





b
(1)
1

b
(2)
1

...
b
(i)
1

...
b
(K)
1


=
λpλm

Kγmeff



1

1
...
1
...
1


,

(6.57)
from which we obtain the first term of the sequence b(i)1 as

b
(1)
1 := u =

λpλm

Kγmeff(Kγ
m
eff + γp)

. (6.58)

Equation (6.57) implies that

−Kγmeffb
(i−1)
1 + (Kγmeff + γp)b

(i)
1 =

λpλm

Kγmeff
, for 2 ≤ i ≤ K, (6.59)

which can equivalently be rewritten as

b
(i)
1 = u+ vb

(i−1)
1 , 2 ≤ i ≤ K, (6.60)
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where we set
v =

Kγmeff
Kγmeff + γp

(6.61)

for simplicity. Combining (6.60) and (6.58), we obtain

b
(i)
1 =

u

1− v
+ vi−1

(
u− u

1− v

)
, 1 ≤ i ≤ K, (6.62)

from which all the elements of b(i)1 (thereby the second moments) can be iteratively
obtained. It is worth noting that one can derive higher moments using formula (6.18),
but we limit our study to the first two moments.

Next, we focus on calculating the first two terms of the sequence an (6.24).
Setting n = 1, 2 in (6.24) and inserting (6.56) and (6.62) into the resulting
equations, respectively, we get

a1 =
λpλm

γpγmeff
and a2 =

λpu
(
K + v

(
−1−K + vK

))
2γp(1− v)2

. (6.63)

Having found the first two terms of an, we are now ready to calculate the Fano factor.
Inserting (6.63) into (6.37), and substituting (6.58) and (6.61) into the resulting
expression yields

Fm = 1 +
λp

γp

(
1 +

γmeff
γp

(
−1 +

(
Kγmeff

Kγmeff + γp

)K
))

, (6.64)

where Fm stands for the multiphasic Fano factor.

6.7 Conclusion

In this chapter, we formulated and analysed a structuration of the two-stage gene
expression model that considers multiple mRNA states. We demonstrated that this
generalised model (in the sense of having multiple mRNA states) can be used to
capture the dynamics of simpler models such as the inactivation loop model and the
multiphasic mRNA model, which were analysed in detail as a particular interest of
this chapter.

We introduced the generalised model and formulated its mathematical
description via the CME. Next, we focused on seeking a solution to the
corresponding partial differential equation obtained by transforming the CME using
the generating function approach. A suitable ansatz was employed for converting
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the PDE to a system of ODEs. Subsequently, using the power series method, we
sought a solution to the ODE system, which is then expressed in matrix form as a
system of recurrence equations. We recovered the generating function of the
stationary distribution of mRNA and protein amounts by means of the coefficients of
power series, which were obtained by solving the recurrence relations under the
initial conditions.

Furthermore, the sought-after solution was then used to characterise the
marginal protein and mRNA distributions. To determine the protein distribution, we
used the factorial moments calculated from the factorial cumulants. Additionally, we
demonstrated that the mRNA distributions are Poissonian; therefore, we derived the
protein mean and Fano factor and thus expressed it in terms of the first two factorial
moments. We then provided two different examples to which the generalised model
and its results can be applied.

The first example was the two-stage gene-expression model extended by an
mRNA inactivation loop. We demonstrated that under a suitable choice of
parameters, the generalised model and its results can be used to recover the
expressions for the extended model. In particular, we rederived the formulae for the
cumulants and showed that they agree with those obtained for the extended model.

As a second example, by making suitable parameter choices in the generalised
model, we presented the multiphasic model in which an mRNA molecule is assumed
to be transitioning through its lifetime stages. The solution formula derived previously
for the generalised model and the associated matrices (e.g. the transition matrix) for
this model were used to determine, upon solving the recursive equations, the first
two moments of mRNA distributions, allowing us to calculate the Fano factor for the
multiphasic model.

In summary, this chapter provides a systematic mathematical breakdown for
protein and mRNA distributions in a structured gene expression model, which takes
into account multiple mRNA states. We believe that the model and its results can be
used in understanding the dynamics of underlying biochemical processes.
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Chapter7
Conclusion

Chemical reaction networks describing many biological processes require a rigorous
mathematical formulation of the underlying model. One of such mechanisms is the
stochastic gene-expression process, which describes the production of gene products
such as proteins. Due to the inherent occurrence of chemical reactions, the number
of species involved varies over time, leading to an interest in quantifying it.
However, this task becomes more and more challenging as the number of species in
the system of interest increases. From a mathematical point of view, simple models
remain inadequate to elucidate the problem, giving rise to the study of more
complex models that account for multivariate dynamics. In this thesis, we have
addressed and studied such models of stochastic gene expression.

First, we reviewed fundamental mathematical concepts and methods common in
biochemical reaction systems. These include general reaction kinetics, whose
deterministic and stochastic description is given by a system of ordinary differential
equations and the chemical master equation, respectively. As a standard technique
for solving the CME, we presented the generating function method. In particular, we
introduced the basic two-stage model of gene expression, providing its
corresponding ODE system and chemical master equation. Additionally, we provided
the stochastic simulation algorithm for obtaining sample time trajectories of species
in a system.

We next focused on a specific multiclass–multistage model that considers
complex lifetime pathways for a self-regulating transcription factor. We have shown
that the one-dimensional and the structured models exhibit the same stationary
protein distribution in the non-bursty regime. Our theoretical results were
cross-validated by performing stochastic simulations.

Motivated by relevant studies in the literature, we have extended the basic
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two-stage gene expression model by including an mRNA inactivation loop. We
provided a comprehensive mathematical analysis in both deterministic and
stochastic frameworks; obtained the statistical measures, which we then used to
quantify the noise. Consequently, our noise analysis demonstrated that the inclusion
of an mRNA inactivation loop into the classical model reduces the protein noise. In
what follows, we have generalised the extended model to the one that considers
multiple mRNA states. We have shown that the generalised model can govern the
dynamics of simpler models, such as the extended and the multiphasic model.
Notably, our results provide non-trivial expressions for the steady-state protein
distribution.

In summary, we think that the models and their extensive mathematical analysis
studied in this thesis will contribute to understanding the dynamics of biochemical
mechanisms in relevant research fields.
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